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Machine Learning algorithms have achieved impressive milestones

Object detection (YOLO)

Text-to-Image Generation (DALL-E)

CAS

prompt: “an armchair in the shape of an avocado”

Text generation (GPT-3)

Title: United Methodists Agree to Historic Split

Subtitle: Those who oppose gay marriage will form their own denomination
Article: After two days of intense debate, the United Methodist Church

has agreed to a historic split - one that is expected to end in the
creation of a new denomination, one that will be "theologically amnd
socially conservative," according to The Washington Post. The majority of
delegates attending the church’s annual General Conference in May voted to
strengthen a ban on the ordination of LGBTQ clergy and to write new rules
that will "discipline" clergy who officiate at same-sex weddings. But
those who opposed these measures have a mew plan: They say they will form a
separate denomination by 2020, calling their church the Christian Methodist
denomination.
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Machine Learning holds great promise for improving healthcare

Diagnose with unprecedented accuracy Augment doctors

Top 12 Ways Artificial Intelligence
Will Impact Healthcare

Artificial intelligence is poised to become a transformational force
in healthcare. How will providers and patients benefit from the
impact of Al-driven tools?

How Artificial Intelligence Improves
Medical Imaging in Hospitals
Deep learning software, such as artificial intelligence, can improve o

Razvan V. Marinescu razvan@csail.mit.edu http://razvan.csail.mit.edu Introduction 3/40



However, for many medical applications, these promises have not been fulfilled

Prediction of clinical variables not always
working

No algorithm/33 could predict cognitive scores in
Alzheimer's (TADPOLE Challenge, Marinescu 2020)

hand,

Generated images are crude, not
high-resolution, mostly 2D

Brain MRI generation (Han, 2018)

Tic (
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AN, 128 x 128)

FLAIImCGAN, 128 x 128)

R B 4

Concat (DCGAN, 128 x 128) Concat (DCGAN, 64 x 64)

Razvan V. Marinescu razvan@csail.mit.edu

http://razvan.csail.mit.edu Introduction

4/ 40



Why are Machine Learning models not working on medical applications?

Lack of good labels

» Alzheimer's diagnosis accuracy just 42%

1+LB
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Why are Machine Learning models not working on medical applications?

Lack of good labels

» Alzheimer's diagnosis accuracy just 42%

1+LB

» Labels are categorical instead of continuous

Mild Moderate Severe

(@D DDP

»n
>

Disease timeline

Razvan V. Marinescu razvan@csail.mit.edu http://razvan.csail.mit.edu

Introduction

5/ 40



Why are Machine Learning models not working on medical applications?

Lack of good labels Lack of good input data/signal

> Alzheimer's diagnosis accuracy just 42% > Limited contrast

1+LB

» Labels are categorical instead of continuous

Mild Moderate Severe

»n
>

Disease timeline
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Why are Machine Learning models not working on medical applications?

Lack of good labels Lack of good input data/signal

> Alzheimer's diagnosis accuracy just 42% > Limited contrast

1+LB

» Low-resolution

» Labels are categorical instead of continuous

Mild Moderate Severe

>

Disease timeline

Razvan V. Marinescu razvan@csail.mit.edu http://razvan.csail.mit.edu Introduction 5/ 40



What can we do?

Lack of good labels Lack of good input data/signal
Solution: Unsupervised Learning of Continuous Dynamics Solution: Image Reconstruction
= Disease Progression Modelling using Deep Generative Models

5 _— Latent High Res. Low Res.

Biomarker

Image Known
/ Generation Corruption

7

Disease
stage
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Outline

1. Disease progression modelling of Alzheimer's disease
1.1 Towards unsupervised clustering of biomarker trajectories

L — D

2. Image Reconstruction using Deep Generative Models
Latent High Res. Low Res.

Image Known
Generation Corruption

3. Future work towards brain anatomy simulators

Biomarker

stage
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Alzheimer's Disease is a Devastating Disease

» 46 million people affected worldwide

People living with dementia around the world

15.8mpLE)

2 2030
(L) 2015 i

Americas Africa Europe
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Alzheimer's Disease is a Devastating Disease

» 46 million people affected worldwide

People living with dementia around the world

2030
2015 2015

Americas Africa Europe

» No treatments available that stop or slow down cognitive decline

» Q: Why did clinical trials fail? A: Treatments were not administered early enough
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Alzheimer's Disease is a Devastating Disease

» 46 million people affected worldwide

People living with dementia around the world

2030
2015 2015

Africa Europe

Americas

» No treatments available that stop or slow down cognitive decline

» Q: Why did clinical trials fail? A: Treatments were not administered early enough

» Q: How can we then identify subjects early in order to administer treatments?

» A: Disease progression model ...
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Building a Disease Progression Model

Brain MRI
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Building a Disease Progression Model

Brain MRI Segmentation
(hippocampus)
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Building a Disease Progression Model

Brain MRI Segmentation
(hippocampus)

Extract
volume
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Building a Disease Progression Model

. Segmentation Volume )
Brain MRI (hippocampus) i — Patient 1
Extract

volume

Disease onset Time
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Building a Disease Progression Model

Brain MRI Segmentation Volume

(hippocampus) i
YT Extract

volume
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Building a Disease Progression Model

. Segmentation Volume )
Brain MRI (hippocampus) — Patient 1
Extract o
volume
> x
) |
Disease onset Time
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Building a Disease Progression Model

. Segmentation Volume )
Brain MRI (hippocampus) — Patient 1
Extract o
volume
> x
Visit 1
Visit 2
Patient 2
) |
Disease onset Time
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Building a Disease Progression Model

Brain MRI Segmentation Volume
(hippocampus)

— Patient 1
= = Patient 2
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volume
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Building a Disease Progression Model

Brain MRI Segmentation Volume
(hippocampus)

— Population model

Visit 1
Visit 2

Patient 2

Disease onset Time

» Can now build population model
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Building a Disease Progression Model

Brain MRI Segmentation Volume
(hippocampus)

— Population model

Visit 1
Visit 2

Patient 2

Disease onset Time

» Can now build population model

» Early diagnosis
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Building a Disease Progression Model

i Segmentation Volume
Brain MRI (higppocamPUS) — Population model
8
F
_>
Visit 1
Visit 2
Patient 2
i |
Disease onset Time

» Can now build population model

» Early diagnosis
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Building a Disease Progression Model

i Segmentation Volume
Brain MRI (higppocamPUS) — Population model
8
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Visit 1
Visit 2
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i |
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» Early diagnosis
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Building a Disease Progression Model

; Volume — Hippocampus
Brain MRI Segmentation — Parietal
A — Frontal
Extract
volume
_>
- >
Disease onset Time

» Can now build population model

» Early diagnosis

» More accurate by analyzing all brain regions
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Building a Disease Progression Model

sanwR Seomeniaion  Vome T Heseramous
A — Frontal

Extract Previous models:

volume > Jedynak, 2012

— > > Fontejin, 2012
» Donohue, 2014
» Schiratti, 2017
» Lorenzi, 2019

Disease onset Time >

» Can now build population model

» Early diagnosis

» More accurate by analyzing all brain regions
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Building a Disease Progression Model

. . Volume — Hippocampus
Brain MRI Segmentation — Parietal
A — Frontal
Extract Previous models:
volume > Jedynak, 2012
B— » Fontejin, 2012
» Donohue, 2014
» Schiratti, 2017
» Lorenzi, 2019
- ' Limitation: require brain
Disease onset Time segmentation a-priori

» Can now build population model

» Early diagnosis

» More accurate by analyzing all brain regions
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Aim: Build a disease progression model for vertexwise data

Aim: Move from segmentation-based analysis to vertexwise

» vertex = point on the brain surface

Syndrome-specific regional atrophy patterns: patients vs. controls O Atmvﬂ:;:;x
= see

Why bvFTD PNFA CBS L omc

g FFE + a0 +40
W e l
are spatially disconnected (Seeley et al., 2009) & ﬁ 2
'y Y

=
» Atrophy = breakdown of neurons R s =
» Functional network = connections between neurons Intrinsic functional connectivity networks: healthy controls

Y il

Seeley et al., Neuron, 2009

1. Atrophy correlates with functional networks, which

T RFI

2. Better prediction and disease staging
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Our model clusters vertices with similar trajectories of pathology

A Subject 1, visit2  Subject 2, visit 2
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Our model clusters vertices with similar trajectories of pathology

A Subject 1, visit2  Subject 2, visit 2

N
4
@
K2
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Our model clusters vertices with similar trajectories of pathology

A Subject 1, visit2  Subject 2, visit 2
N
4
Q?'(@
1 1
B 1 1
" ! extract cortical
§ ! thickness
4
.E
£ 1
8 1
- 1
3 1
5 T
> Disease
Progression
Score
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Our model clusters vertices with similar trajectories of pathology

A Subject 1, visit 2 Subject 2, visit 2 I group vertices into
A i clusters based on
4@{@ trajectory dynamics

extract cortical
thickness

Vertex 1 cort. thicknessw

Disease
Progression
Score
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Our model clusters vertices with similar trajectories of pathology

A Subject 1, visit 2 Subject 2, visit 2

group vertices into
clusters based on
trajectory dynamics

1
B '
" : extract cortical
%] .
Qe thickness estimate average
S trajectory for each
£ D cluster
b 1
I} [}
o I 5 -
é 1 0]
i 5 |
> Disease 3 \
) =
Progression g \ \ \
Score .
Disease
Progression score
Razvan V. Marinescu razvan@csail.mit.edu http://razvan.csail.mit.edu Disease Progression Modelling 12 / 40



Our model clusters vertices with similar trajectories of pathology

A Subject 1, visit2  Subject 2, visit 2 — group vertices into
+\ —_——_——— clusters based on
4@{@ trajectory dynamics
~~‘~~
~<_
1 1

B 1 1

" ! extract cortical

"’ ! thick i

] ickness estimate average

35 trajectory for each

£ cluster

5 : ° E estimate disease o D

° . 2 progression scores 21

x B 3

) 1 Q o

S ] . E —— E \

> Disease 3 ./' — [} \

Progression 5 ° 5 S\
Score = Disease - Di
isease

Progression score Progression score

Razvan V. Marinescu razvan@csail.mit.edu http://razvan.csail.mit.edu Disease Progression Modelling 12 / 40



Our model clusters vertices with similar trajectories of pathology

A Subject 1, visit 2 Subject 2, visit 2 e group vertices into
+\ —_——_——— clusters based on
4@{@ trajectory dynamics
~~‘~~
~~.
1 1

B 1 1

" : extract cortical

173 .

] thickness iterate until estimate average

K<} convergence, trajectory for each

£ cluster

5 : ° E estimate disease o D

° . 2 progression scores 2T

x B 3

) 1 Q o

g : — 3 \

2 Disease % ./' _ P \

Progression 5 ° 5 S\
Score > f = i
Disease Disease

Progression score Progression score
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Our model clusters vertices with similar trajectories of pathology

A Subject 1, visit2  Subject 2, visit 2 [ _c group vertices into
+\ _——_——— clusters based on
Qé@ trajectory dynamics

1
B 1
" : extract cortical
%] .
g thickness iterate until esltlmate average
3 convergence, trajectory for each
= 1 cluster
£ : o E estimate disease o D
° p 2 progression scores 21
x 3 3
[} 1 Q 5}
S T £ £
2 Disease % 3
Progression % 5
Score > i = i
Disease Disease
Progression score Progression score

Contribution: Model can estimate pathology evolution at each point on the brain surface
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Building the model using a generative Bayesian framework

time shift
Bt B2
1. Model disease progression score for one subject i at visit j: | Difease “
stage
sij = aitjj + B 'il
— —
at oz

progression speed
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Building the model using a generative Bayesian framework

1. Model disease progression score for one subject i at visit j:

Sij = qjtj + Bi

2. Model trajectory of cortical thickness at one location / on the brain:

p(V/lai, B, Ok, ok) ~ N(f(eity + Bii k), ok)

time shift
B1 B2
1 i |
Disease
* stage ﬁ
— —
at az

progression speed
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Building the model using a generative Bayesian framework

time shift
Bt B2
1. Model disease progression score for one subject i at visit j: | Difease “
stage
sij = aitjj + B 'ﬁl
— —
at oz

progression speed

2. Model trajectory of cortical thickness at one location / on the brain:

p(V/lai, B, Ok, ok) ~ N(f(eity + Bii k), ok)

3. Extend to all locations and subjects:

L
P(V,Z\a,ﬁ,ﬂff):H H N(V/|f (it + Bii 0z),02)
I (ijel

biomarker value

disease stage
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Building the model using a generative Bayesian framework

time shift
B1
1. Model disease progression score for one subject i at visit j: | Difease
stage
sij = aitjj + B 'ﬁl
—

at
progression speed
2. Model trajectory of cortical thickness at one location / on the brain:

p(V/lai, B, Ok, ok) ~ N(f(eity + Bii k), ok)

3. Extend to all locations and subjects:

B2
|

é

e
a2

L
P(V,Z\Q,B,QU):H H N(V/|f (it + Bii 0z),02)
bty

ij)el
4. Marginalise over the hidden variables Z; (cluster assignments): g
L K ) ) AN
p(Vla, 8,0,0) = [[D_p(z = k) [T MV IF(ity + Bi i 0k), o) T didease stage
=1 k=1 (iJ)el
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Our Model Finds Plausible Atrophy Patterns on Four Datasets

» Similar patterns of atrophy in independent Alzheimer's MRI datasets (ADNI vs DRC)
» Distinct patterns of atrophy in different diseases (Alzheimer's vs PCA) and modalities (MRI vs PET)

severe pathology moderate pathology
[ s |
ADNI DRC

Se
YA

Marinescu et al., Neurolmage, 2019
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Validation - Model Robustly Estimates Atrophy Patterns

Method: Tested the consistency of the spatial clustering in ADNI using 10-fold CV

Results: Good agreement in terms of spatial distribution (dice score 0.89)

f=1 f=2

f=3

— dustero — clustero — clustero
g 05 e cluster 1 @ 05 e custer 1 g 03 e cluster 1 @ 05
H — cluster2 H — duster2 H — uster2 H
N oo N oo N oo ¥ o
2 o5 2 05 g -05 £ -0s
E E E E
T N 3 T 10 I
£ 1o £-10 g0 £
8 8 8 8

-15 15 -15 -15

—clustero
— cluster1
— cluster2

Cortical Thickness Z-score

— clustero
— cluster1
— cluster2

E 1 2 3 - ] 1o > 3
Disease Progression Score (DPS) Disease Progression Score (DPS) Disease Progression Score (DPS)

Marinescu et al., Neuroimage, 2019

- 1 2 3
Disease Progression Score (DPS)

10 1 2 3
Disease Progression Score (DPS)
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Disease Progression Modelling — Summary

v

We modelled the continuous progression of Alzheimer's disease and related dementias

v

Used generative bayesian model that does not require labels (unsupervised)

v

Plausible results on four different datasets
» However, such models require good quality data, to perform registration and extract disease markers

» How can we do such modelling for scans with limited resolution and contrast?
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Outline

1. Disease progression modelling of Alzheimer's disease
1.1 Towards unsupervised clustering of biomarker trajectories

L — D

2. Image Reconstruction using Deep Generative Models
Latent High Res. Low Res.

Image Known
Generation Corruption

3. Future work towards brain anatomy simulators

Biomarker

stage
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Aim: image reconstruction using *pre-trained* generator models

» Adapt the state-of-the-art StyleGAN2 for medical image

reconstruction

MRI reconstruction

—>

StyleGAN2 (Karras et al, 2019)
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Current image reconstruction methods have several limitations

» Require large computational resources and data Low Res. High Res.

1
ape . . 1
» Are specific to particular corruption tasks -
Inverse
Corruption
» Cannot deal with distribution shifts:
» in inputs: e.g. older populations
P in corruption type: e.g. change in blur kernel 1
2
—2

» Are anti-causal, so they don't follow the data-generation
process
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Limitation 1: State-of-the-art DL methods have large computational requirements

» Requirements = Computation Time + Advanced Hardware + Large Datasets

» Most computation now runs on clouds

» Currently few labs/companies have the resources to train state-of-the-art models

» StyleGAN2: 9 days on 4 GPUs
» GPT-3: 355 years on single GPU

» Solutions moving forward:

P Adapting previously-trained models
» Combine smaller models into larger ones
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Limitation 2: Distribution shifts require model re-training

» Distribution shifts happen all the time:

P Changes in hospital scanners, protocols, software upgrades
P Can be continuous: population getting older due to better healthcare

» Shifts can result in combinatorial effects in number of re-training instances!

» Compositionality is one potential solution

Without compositionality: N x M With compositionality: N + M

Scanner 1 Disease 1 Scanner 1 Disease 1

Scanner 2 Disease 2 Scanner 2 Disease 2

Scanner N Disease M Scanner N Disease M
Razvan V. Marinescu razvan@csail.mit.edu
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Limitation 3: Models are anti-causal

» Existing model don't follow the data-generation process
» Discriminative modelling easier than generative

» Causal modelling is the right solution to deal with distribution shifts

Anti-Causal

Genetics
"oy
Motion ——»

~ Covariates
.,oruted - age

- disease
- gender

Causal

Genetics
D Generic anatom
D m y

Covariates a“a\o‘“\!

) b
O’o%"’/o,, Motion
S corrupted

m T2 scan

\S e P A5\
age nod® Mo & Wy (
- disease dels q‘i K‘ ¥
- gender )
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Recent models can perform image reconstruction using pre-trained generative models

Image2StyleGAN++ (Abdal et al, 2020) PULSE (Menon et al, 2020)

» These methods can generalise for any corruption process, because they don't use an embedder network
» Cannot characterize uncertainty and recover multiple solutions

» We will aim to construct a Bayesian formulation that can fully characterize the posterior over all potential solutions
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Method: We perform image reconstruction by combining two models

1. a pre-trained generator G (StyleGAN2)
2. a known forward corruption model f;

Latent High Res. Low Res. Input

G ( w) fi
Image Known
Generation Corruption

loss
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Method: We perform image reconstruction by combining two models

1. a pre-trained generator G (StyleGAN2)
2. a known forward corruption model f;

Latent High Res. Low Res. Input

G ( w)
Image Known
Generation Corruption
Ioss
L’
L»
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Method: We perform image reconstruction by combining two models
1. a pre-trained generator G (StyleGAN2)
2. a known forward corruption model f;

Latent High Res. Low Res. Input Low Res. High Res.
-1
G(w) fi
Image Known Learned
Generation Corruption Inverse
Corruption
Ioss
-1
Ours (Marinescu et al, arXiv, 2020) Previous
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Reconstructed image is given by computing the Bayesian maximum a-posteriori (MAP) estimate

» We optimise:
*

w* = arg max p(w)p(/|w)
w
» For uninformative prior p(w) and Gaussian noise model (pixelwise independent), we get:
w* = argmin||/ — f o G(w)]|3
w

» This can be optimised with SGD

» Once we get w*, the the reconstructed image is G(w*)

Latent High Res. Low Res. Input
G(w)
w|——p
Image Known
Generation Corruption
Ioss
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Good reconstructions require further modifications

» We started from the original StyleGAN2 inversion
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Good reconstructions require further modifications

» We started fi the original StyleGAN2 i si
e started from the original Style inversion Wi = argmin [[6(1) — 6o F o G(w, 1)|3
w,n

» Yet the reconstruction was not good — required several
changes

StyleGAN2 inv. True
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Good reconstructions require further modifications

» We started from the original StyleGAN2 inversion w* = argmin [|6(/) — ¢ o f o G(w)||§
w

» Yet the reconstruction was not good — required several
changes

» remove noise layers

True

Input StyleGAN2 inv. + 1o noise
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Good reconstructions require further modifications

» We started from the original StyleGAN2 inversion

W= wi,.., W

» Yet the reconstruction was not good — required several w* = argmin||¢(/) — o f o G(w)|3
w

changes

P optimize latents at all resolutions

Input StyleGAN2 inv. + no noise + W™ optim.

True
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Good reconstructions require further modifications

» We started from the original StyleGAN2 inversion

. . w* = argmin [|¢(/) — po f o G(w)|[3+]|/ — f o G(w)[3
» Yet the reconstruction was not good — required several w
changes

P add pixelwise loss

True

Input StyleGAN2 inv. + no noise + W™ optim.  + pixelwise Lo
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Good reconstructions require further modifications

» We started from the original StyleGAN2 inversion

w* =argmin[[¢(/) — ¢ o fo G(w)|[3 + || — f o G(w)][3+
» Yet the reconstruction was not good — required several w

changes wp — [ 2
()

P gaussian prior on latents

True

Input StyleGAN2 inv. + no noise + W™ optim.  + pixelwise Lo + prior w

(@) ®  © @ (e
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Good reconstructions require further modifications

» We started from the original StyleGAN2 inversion
" =argmin||¢(/) —pofo G(W)Hg + Il = fo G(w)|3+

2 (Wi ) Z |w,uw,|

» Yet the reconstruction was not good — required several
changes

P force latents to be colinear

Input StyleGAN2 inv. + no noise + W™ optim.  + pixelwise Lo + prior w + colinear True
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Good reconstructions require further modifications

» We started from the original StyleGAN2 inversion
" =argmin||¢(/) —pofo G(W)Hg + Il = fo G(w)|3+

2 (Wi ) Z |w,uw,|

» Yet the reconstruction was not good — required several
changes

P Analytically expressed the full likelihood (Marinescu et al, 2021)

Input StyleGAN2 inv. + no noise + W™ optim.  + pixelwise Lo + prior w + colinear True

(@) ®  © @ (e ®
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Results on super-resolution using the FFHQ dataset

» We achieve state-of-the-art (SOTA) results on small inputs resolutions 16x16
» On larger resolutions (>32x32), we achieve very good results, albeit not SOTA

LR Bicubic ESRGAN [48] SRFBN [31] PULSE[36] BRGM BRGM True
(x4) (x4) (x4) 1024x1024 (x4) 1024x1024  1024x1024

LA

Marinescu et al, arXiv, 2020
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Similar results on super-resolution for medical datasets

» We achieve state-of-the-art (SOTA) results on small inputs resolutions 16x16
» On larger resolutions (>>32x32), we achieve very good results, albeit not SOTA

LR Bicubic ESRGAN [48] SRFBN[31]  BRGM BRGM True
(x4) (x4) (x4) (x4) (full-res.)

Marinescu et al, arXiv, 2020
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Inpainting also achieves state-of-the-art results

» Best previous method (SN-PatchGAN, CVPR 2019) does not work for large masks

» Our method can “hypothesize” missing structure
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Inpainting also achieves state-of-the-art results

» Best previous method (SN-PatchGAN, CVPR 2019) does not work for large masks

» Our method can “hypothesize” missing structure

Original Mask SN PatchGAN BRGM
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Results confirmed through quantitative evaluation

Super-resolution
Dataset | BRGM PULSE [36] ESRGAN [48] SRFBN [31]

» Three different datasets, at different resolutions

FFHQ 167 [024/2566 02927.14 0352932  0.33/22.07

FFHQ 322 |0.30/18.93 048/4297 02972302 0231273

. FFHQ 642 036/1607 053/4131  026/1837  0.23/9.40
» Human study with 20 raters FFHQ 1282 0.34/15.84 0.57/34.89  0.15/15.84  0.09/7.55
Xeray 162 |0.18/11.61 - 032/14.67  0.37/12.28

Xeray 322 |0.23/1047 - 03211256 0.21/6.84

Xeray 64203171058 - 030867 022532

X-ray 1282 | 0.27/10.53 - 020/7.19  0.07/4.33

Brains 162 | 0.12/12.42 - 0342281 0.33/12.57

Brains 322 |0.17/11.08 - 031/1416  0.18/6.80

Inpainting

SN-PatchGAN [30]
Dataset|LPIPS RMSE PSNR SSIM[LPIPS RMSE PSNR SSIM
FFHQ | 0.19 24.28 2133 0.84 | 024 3075 19.67 0.82
Xeray | 003 13.55 2747 091|020 27.80 22.02 0.86
Brains | 0.09 865 30.94 0.88 | 022 2474 2147 0.75

Human evaluation
Dataset  |BRGM PULSE [36] ESRGAN [18] SRFBN [31]

FFHQ 16* | 0.42 032 0.11 0.15
FFHQ 322 | 0.39 0.02 0.12 0.47
FFHQ 64 | 0.14 0.08 0.32 045
FFHQ 1282 | 0.14 0.10 0.39 0.38
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Sampling multiple reconstructions through Variational Inference

» Variational inference can allows us to sample from the posterior distribution:

a(wlo)

0* = argemin KL [q(w|0)||p(w|l)] = argemin/q(w|0) log de

» We approximate the integral using Monte Carlo samples w() taken from q(w]0)

n

0* = arg min Z log q(w(i)|0) — log p(w(i)) — log p(l|w(i))
i=1
Input True Est. Mean

Sample 1 Sample 2 Sample 3 Sample 4

Marinescu et. al., 2020
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More examples using Variational Inference

Clean

Mask/
Merged
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Our method also has limitations that we plan to address

» It can fail for images that are too dissimilar to the training ones
P Because generator cannot extrapolate easily

Input Reconstruction True

» Can be inconsistent with the input image

Input
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Bayesian Image Reconstruction — Summary

» Proposed a method for image reconstruction using pre-trained deep generative models

» Solution is given by the Bayesian MAP estimate

» State-of-the-art results on super-resolution and inpainting

Razvan V. Marinescu razvan@csail.mit.edu http://razvan.csail.mit.edu Bayesian Image Reconstruction 35 /40



Outline

1. Disease progression modelling of Alzheimer's disease
1.1 Towards unsupervised clustering of biomarker trajectories

L — D

2. Image Reconstruction using Deep Generative Models
Latent High Res. Low Res.

Image Known
Generation Corruption

3. Future work towards brain anatomy simulators

Biomarker

stage
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Long-term vision

Accurate dmgnosns and prognosis through Al Al to augment doctors
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Future work

Better and faster reconstruction of medical images
Undersampled k-space Acquired Image

Biological simulators

Multimodal modelling . . .
images + text + structural data Dzease P;o;iressmn Modelling
) B : ' ¥
S 0005000000
¥ ] — 7\ 0
« s & .%? (XA

75 7 79 81

|

Age

38 /40
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Future work: Brain tissue and anatomy simulator

Simulator for brain anatomy from genetics:
» Using deep generative models
» Accounting for distributions shifts

» Following causal principles

Under-
sampled

\ m
T2 scan ’?70 '0’70 Motion
B %% 7 corrupted

T1 scan

MRI scan

Genetics )
N Generic anatomy

~

Covariates a0

pl‘o tO
mo Co/

0q,
s\ PET scan els

- age mode\s
- disease 2 .
- gender L N . v
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Conclusion

Problem: Lack of good labels Problem: Lack of good input data
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Conclusion

Problem: Lack of good labels Problem: Lack of good input data
Solution: Unsupervised Learning through Solution: Image Reconstruction
Disease Progression Modelling using Deep Generative Models
P Latent High Res. Low Res.
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Conclusion

Problem: Lack of good labels Problem: Lack of good input data
Solution: Unsupervised Learning through Solution: Image Reconstruction
Disease Progression Modelling using Deep Generative Models

Latent High Res. Low Res.

5 —
6 lmage Known
e Generation Corruption

Long-term vision
Al to augment doctors
e & 4 2

Accurate diagnosis and prognosis through Al
- L - "\ 3 - ‘
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