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Machine Learning algorithms have achieved impressive milestones

Object detection (YOLO)

Image Generation (StyleGAN2)

Text-to-Image Generation (DALL-E)

prompt: “an armchair in the shape of an avocado”

Text generation (GPT-3)

I Largely driven by increases in data and compute
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Machine Learning holds great promise for improving healthcare

Diagnose with unprecedented accuracy Augment doctors
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However, for many medical applications, these promises have not been fulfilled

Prediction of clinical variables not always
working

No algorithm/33 could predict cognitive scores in
Alzheimer’s (TADPOLE Challenge, Marinescu 2020)

Generated images are crude, not
high-resolution, mostly 2D

Brain MRI generation (Han, 2018)
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Why are Machine Learning models not working on medical applications?

Lack of good labels

I Alzheimer’s diagnosis accuracy just 42%

I Labels are categorical instead of continuous

     Mild                  Moderate              Severe                           

Disease timeline

Lack of good input data/signal
I Limited contrast

I Low-resolution
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What can we do?

Lack of good labels Lack of good input data/signal

Solution: Unsupervised Learning of Continuous Dynamics
= Disease Progression Modelling

Solution: Image Reconstruction
using Deep Generative Models

Latent

w

High Res. Low Res.

Image

Generation
Known

Corruption
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Outline

1. Disease progression modelling of Alzheimer’s disease
1.1 Towards unsupervised clustering of biomarker trajectories

2. Image Reconstruction using Deep Generative Models
Latent

w

High Res. Low Res.

Image

Generation
Known

Corruption

3. Future work towards brain anatomy simulators
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Alzheimer’s Disease is a Devastating Disease

I 46 million people affected worldwide

I No treatments available that stop or slow down cognitive decline

I Q: Why did clinical trials fail? A: Treatments were not administered early enough

I Q: How can we then identify subjects early in order to administer treatments?

I A: Disease progression model ...
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Building a Disease Progression Model

Brain MRI

I Can now build population model

I Early diagnosis

I More accurate by analyzing all brain regions

Previous models:

I Jedynak, 2012

I Fontejin, 2012

I Donohue, 2014

I Schiratti, 2017

I Lorenzi, 2019

Limitation: require brain
segmentation a-priori
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Aim: Build a disease progression model for vertexwise data

Aim: Move from segmentation-based analysis to vertexwise

I vertex = point on the brain surface

Why:

1. Atrophy correlates with functional networks, which
are spatially disconnected (Seeley et al., 2009)
I Atrophy = breakdown of neurons
I Functional network = connections between neurons

2. Better prediction and disease staging

Seeley et al., Neuron, 2009
Razvan V. Marinescu razvan@csail.mit.edu http://razvan.csail.mit.edu Disease Progression Modelling 11 / 40



Our model clusters vertices with similar trajectories of pathology

estimate disease 
progression scores

iterate until 
convergence

Disease 
Progression score

Ve
rte

x 
m

ea
su

re

Disease 
Progression 

Score

Ve
rte

x 
1 

co
rt.

 th
ic

kn
es

s extract cortical 
thickness

group vertices into 
clusters based on 

trajectory dynamics

estimate average 
trajectory for each 

cluster

Subject 1, visit 2 Subject 2, visit 2

Disease 
Progression score

Ve
rte

x 
m

ea
su

re

A

B

C

DE

Contribution: Model can estimate pathology evolution at each point on the brain surface

Razvan V. Marinescu razvan@csail.mit.edu http://razvan.csail.mit.edu Disease Progression Modelling 12 / 40



Our model clusters vertices with similar trajectories of pathology

estimate disease 
progression scores

iterate until 
convergence

Disease 
Progression score

Ve
rte

x 
m

ea
su

re

Vert
ex

 1

Disease 
Progression 

Score

Ve
rte

x 
1 

co
rt.

 th
ic

kn
es

s extract cortical 
thickness

group vertices into 
clusters based on 

trajectory dynamics

estimate average 
trajectory for each 

cluster

Subject 1, visit 2 Subject 2, visit 2

Disease 
Progression score

Ve
rte

x 
m

ea
su

re

A

B

C

DE

Contribution: Model can estimate pathology evolution at each point on the brain surface

Razvan V. Marinescu razvan@csail.mit.edu http://razvan.csail.mit.edu Disease Progression Modelling 12 / 40



Our model clusters vertices with similar trajectories of pathology

estimate disease 
progression scores

iterate until 
convergence

Disease 
Progression score

Ve
rte

x 
m

ea
su

re

Vert
ex

 1

Disease 
Progression 

Score

Ve
rte

x 
1 

co
rt.

 th
ic

kn
es

s extract cortical 
thickness

group vertices into 
clusters based on 

trajectory dynamics

estimate average 
trajectory for each 

cluster

Subject 1, visit 2 Subject 2, visit 2

Disease 
Progression score

Ve
rte

x 
m

ea
su

re

A

B

C

DE

Contribution: Model can estimate pathology evolution at each point on the brain surface

Razvan V. Marinescu razvan@csail.mit.edu http://razvan.csail.mit.edu Disease Progression Modelling 12 / 40



Our model clusters vertices with similar trajectories of pathology

estimate disease 
progression scores

iterate until 
convergence

Disease 
Progression score

Ve
rte

x 
m

ea
su

re

Vert
ex

 1

Disease 
Progression 

Score

Ve
rte

x 
1 

co
rt.

 th
ic

kn
es

s extract cortical 
thickness

group vertices into 
clusters based on 

trajectory dynamics

estimate average 
trajectory for each 

cluster

Subject 1, visit 2 Subject 2, visit 2

Disease 
Progression score

Ve
rte

x 
m

ea
su

re

A

B

C

DE

Contribution: Model can estimate pathology evolution at each point on the brain surface

Razvan V. Marinescu razvan@csail.mit.edu http://razvan.csail.mit.edu Disease Progression Modelling 12 / 40



Our model clusters vertices with similar trajectories of pathology

estimate disease 
progression scores

iterate until 
convergence

Disease 
Progression score

Ve
rte

x 
m

ea
su

re

Vert
ex

 1

Disease 
Progression 

Score

Ve
rte

x 
1 

co
rt.

 th
ic

kn
es

s extract cortical 
thickness

group vertices into 
clusters based on 

trajectory dynamics

estimate average 
trajectory for each 

cluster

Subject 1, visit 2 Subject 2, visit 2

Disease 
Progression score

Ve
rte

x 
m

ea
su

re

A

B

C

DE

Contribution: Model can estimate pathology evolution at each point on the brain surface

Razvan V. Marinescu razvan@csail.mit.edu http://razvan.csail.mit.edu Disease Progression Modelling 12 / 40



Our model clusters vertices with similar trajectories of pathology

estimate disease 
progression scores

iterate until 
convergence

Disease 
Progression score

Ve
rte

x 
m

ea
su

re

Vert
ex

 1

Disease 
Progression 

Score

Ve
rte

x 
1 

co
rt.

 th
ic

kn
es

s extract cortical 
thickness

group vertices into 
clusters based on 

trajectory dynamics

estimate average 
trajectory for each 

cluster

Subject 1, visit 2 Subject 2, visit 2

Disease 
Progression score

Ve
rte

x 
m

ea
su

re

A

B

C

DE

Contribution: Model can estimate pathology evolution at each point on the brain surface

Razvan V. Marinescu razvan@csail.mit.edu http://razvan.csail.mit.edu Disease Progression Modelling 12 / 40



Our model clusters vertices with similar trajectories of pathology

estimate disease 
progression scores

iterate until 
convergence

Disease 
Progression score

Ve
rte

x 
m

ea
su

re

Vert
ex

 1

Disease 
Progression 

Score

Ve
rte

x 
1 

co
rt.

 th
ic

kn
es

s extract cortical 
thickness

group vertices into 
clusters based on 

trajectory dynamics

estimate average 
trajectory for each 

cluster

Subject 1, visit 2 Subject 2, visit 2

Disease 
Progression score

Ve
rte

x 
m

ea
su

re

A

B

C

DE

Contribution: Model can estimate pathology evolution at each point on the brain surface

Razvan V. Marinescu razvan@csail.mit.edu http://razvan.csail.mit.edu Disease Progression Modelling 12 / 40



Our model clusters vertices with similar trajectories of pathology

estimate disease 
progression scores

iterate until 
convergence

Disease 
Progression score

Ve
rte

x 
m

ea
su

re

Vert
ex

 1

Disease 
Progression 

Score

Ve
rte

x 
1 

co
rt.

 th
ic

kn
es

s extract cortical 
thickness

group vertices into 
clusters based on 

trajectory dynamics

estimate average 
trajectory for each 

cluster

Subject 1, visit 2 Subject 2, visit 2

Disease 
Progression score

Ve
rte

x 
m

ea
su

re

A

B

C

DE

Contribution: Model can estimate pathology evolution at each point on the brain surface
Razvan V. Marinescu razvan@csail.mit.edu http://razvan.csail.mit.edu Disease Progression Modelling 12 / 40



Building the model using a generative Bayesian framework

1. Model disease progression score for one subject i at visit j :

sij = αi tij + βi

2. Model trajectory of cortical thickness at one location l on the brain:

p(V ij
l |αi , βi , θk , σk ) ∼ N(f (αi tij + βi ; θk ), σk )

3. Extend to all locations and subjects:

p(V ,Z |α, β, θ, σ) =
L∏
l

∏
(i,j)∈I

N(V ij
l |f (αi tij + βi ; θZl

), σZl
)

4. Marginalise over the hidden variables Zl (cluster assignments):

p(V |α, β, θ, σ) =
L∏

l=1

K∑
k=1

p(Zl = k)
∏

(i,j)∈I

N(V ij
l |f (αi tij + βi ; θk ), σk )
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Our Model Finds Plausible Atrophy Patterns on Four Datasets

I Similar patterns of atrophy in independent Alzheimer’s MRI datasets (ADNI vs DRC)

I Distinct patterns of atrophy in different diseases (Alzheimer’s vs PCA) and modalities (MRI vs PET)

severe pathology moderate pathology

ADNI DRC

PCA PET

Marinescu et al., NeuroImage, 2019
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Validation - Model Robustly Estimates Atrophy Patterns

Method: Tested the consistency of the spatial clustering in ADNI using 10-fold CV

Results: Good agreement in terms of spatial distribution (dice score 0.89)

f=1 f=2 f=3 f=4 f=5

Marinescu et al., Neuroimage, 2019
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Disease Progression Modelling – Summary

I We modelled the continuous progression of Alzheimer’s disease and related dementias

I Used generative bayesian model that does not require labels (unsupervised)

I Plausible results on four different datasets

I However, such models require good quality data, to perform registration and extract disease markers

I How can we do such modelling for scans with limited resolution and contrast?
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Outline

1. Disease progression modelling of Alzheimer’s disease
1.1 Towards unsupervised clustering of biomarker trajectories

2. Image Reconstruction using Deep Generative Models
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3. Future work towards brain anatomy simulators
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Aim: image reconstruction using *pre-trained* generator models

I Adapt the state-of-the-art StyleGAN2 for medical image
reconstruction

MRI reconstruction

StyleGAN2 (Karras et al, 2019)
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Current image reconstruction methods have several limitations

I Require large computational resources and data

I Are specific to particular corruption tasks

I Cannot deal with distribution shifts:
I in inputs: e.g. older populations
I in corruption type: e.g. change in blur kernel

I Are anti-causal, so they don’t follow the data-generation
process
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Limitation 1: State-of-the-art DL methods have large computational requirements

I Requirements = Computation Time + Advanced Hardware + Large Datasets

I Most computation now runs on clouds

I Currently few labs/companies have the resources to train state-of-the-art models
I StyleGAN2: 9 days on 4 GPUs
I GPT-3: 355 years on single GPU

I Solutions moving forward:
I Adapting previously-trained models
I Combine smaller models into larger ones
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Limitation 2: Distribution shifts require model re-training

I Distribution shifts happen all the time:
I Changes in hospital scanners, protocols, software upgrades
I Can be continuous: population getting older due to better healthcare

I Shifts can result in combinatorial effects in number of re-training instances!

I Compositionality is one potential solution
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Limitation 3: Models are anti-causal

I Existing model don’t follow the data-generation process
I Discriminative modelling easier than generative

I Causal modelling is the right solution to deal with distribution shifts
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Recent models can perform image reconstruction using pre-trained generative models

Image2StyleGAN++ (Abdal et al, 2020) PULSE (Menon et al, 2020)

I These methods can generalise for any corruption process, because they don’t use an embedder network

I Cannot characterize uncertainty and recover multiple solutions

I We will aim to construct a Bayesian formulation that can fully characterize the posterior over all potential solutions
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Method: We perform image reconstruction by combining two models
1. a pre-trained generator G (StyleGAN2)
2. a known forward corruption model f1
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Reconstructed image is given by computing the Bayesian maximum a-posteriori (MAP) estimate

I We optimise:
w∗ = arg max

w
p(w)p(I |w)

I For uninformative prior p(w) and Gaussian noise model (pixelwise independent), we get:

w∗ = arg min
w
||I − f ◦ G(w)||22

I This can be optimised with SGD

I Once we get w∗, the the reconstructed image is G(w∗)
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Good reconstructions require further modifications

I We started from the original StyleGAN2 inversion

I Yet the reconstruction was not good → required several
changes

w∗, η∗ = arg min
w,η

||φ(I )− φ ◦ f ◦ G(w , η)||22
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Good reconstructions require further modifications

I We started from the original StyleGAN2 inversion

I Yet the reconstruction was not good → required several
changes

I remove noise layers

w∗ = arg min
w
||φ(I )− φ ◦ f ◦ G(w)||22
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Good reconstructions require further modifications

I We started from the original StyleGAN2 inversion

I Yet the reconstruction was not good → required several
changes

I optimize latents at all resolutions

w = w1, ..,wL

w∗ = arg min
w
||φ(I )− φ ◦ f ◦ G(w)||22
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Good reconstructions require further modifications

I We started from the original StyleGAN2 inversion

I Yet the reconstruction was not good → required several
changes

I add pixelwise loss

w∗ = arg min
w
||φ(I )− φ ◦ f ◦ G(w)||22+||I − f ◦ G(w)||22
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Good reconstructions require further modifications

I We started from the original StyleGAN2 inversion

I Yet the reconstruction was not good → required several
changes

I gaussian prior on latents

w∗ = arg min
w
||φ(I )− φ ◦ f ◦ G(w)||22 + ||I − f ◦ G(w)||22+

+
∑
i

(
wi − µ
σi

)2
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Good reconstructions require further modifications

I We started from the original StyleGAN2 inversion

I Yet the reconstruction was not good → required several
changes

I force latents to be colinear

w∗ = arg min
w
||φ(I )− φ ◦ f ◦ G(w)||22 + ||I − f ◦ G(w)||22+

+
∑
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)2
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Good reconstructions require further modifications

I We started from the original StyleGAN2 inversion

I Yet the reconstruction was not good → required several
changes

I Analytically expressed the full likelihood (Marinescu et al, 2021)

w∗ = arg min
w
||φ(I )− φ ◦ f ◦ G(w)||22 + ||I − f ◦ G(w)||22+

+
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Results on super-resolution using the FFHQ dataset

I We achieve state-of-the-art (SOTA) results on small inputs resolutions 16x16

I On larger resolutions (>32x32), we achieve very good results, albeit not SOTA

Marinescu et al, arXiv, 2020
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Similar results on super-resolution for medical datasets

I We achieve state-of-the-art (SOTA) results on small inputs resolutions 16x16

I On larger resolutions (>32x32), we achieve very good results, albeit not SOTA

Marinescu et al, arXiv, 2020
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Inpainting also achieves state-of-the-art results

I Best previous method (SN-PatchGAN, CVPR 2019) does not work for large masks

I Our method can “hypothesize” missing structure
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Results confirmed through quantitative evaluation

I Three different datasets, at different resolutions

I Human study with 20 raters

Super-resolution

Inpainting

Human evaluation
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Sampling multiple reconstructions through Variational Inference

I Variational inference can allows us to sample from the posterior distribution:

θ∗ = arg min
θ

KL [q(w |θ)||p(w |I )] = arg min
θ

∫
q(w |θ) log

q(w |θ)

p(w)p(I |w)
dw

I We approximate the integral using Monte Carlo samples w (i) taken from q(w |θ)

θ∗ = arg min
θ

n∑
i=1

log q(w (i)|θ)− log p(w (i))− log p(I |w (i))

Marinescu et. al., 2020
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More examples using Variational Inference
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Our method also has limitations that we plan to address

I It can fail for images that are too dissimilar to the training ones
I Because generator cannot extrapolate easily

I Can be inconsistent with the input image
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Bayesian Image Reconstruction – Summary

I Proposed a method for image reconstruction using pre-trained deep generative models

I Solution is given by the Bayesian MAP estimate

I State-of-the-art results on super-resolution and inpainting
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Outline

1. Disease progression modelling of Alzheimer’s disease
1.1 Towards unsupervised clustering of biomarker trajectories

2. Image Reconstruction using Deep Generative Models
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Long-term vision

Accurate diagnosis and prognosis through AI AI to augment doctors
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Future work

Biological simulators

Multimodal modelling
images + text + structural data

Better and faster reconstruction of medical images

Disease Progression Modelling
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Future work: Brain tissue and anatomy simulator

Simulator for brain anatomy from genetics:

I Using deep generative models

I Accounting for distributions shifts

I Following causal principles
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Conclusion

Problem: Lack of good labels Problem: Lack of good input data

Solution: Unsupervised Learning through
Disease Progression Modelling

Solution: Image Reconstruction
using Deep Generative Models
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