Medical Image Generation and Analysis using Bayesian Generative Models

Răzvan V. Marinescu

Massachusetts Institute of Technology

Machine Learning algorithms have achieved impressive milestones

Object detection (YOLO)

prompt: "an armchair in the shape of an avocado"

Image Generation (StyleGAN2)

Text generation (GPT-3)

Title: United Methodists Agree to Historic Split Subtitle: Those who oppose gay marriage will form their own denomination Article: After two days of intense debates, the United Methodist Church has agreed to a historic split - one that is expected to end in the creation of a new denomination, one that will be "theologically and socially conservative," according to The Washington Post. The majority of delegates attending the church's annual General Conference in May woted to strengthen a ban on the ordination of LGBTQ clergy and to write new rules that will "discipline" clergy who officiate at same-sex weddings. But those who opposed these measures have a new plan: They say they will form a separate denomination.

Diagnose with unprecedented accuracy

Top 12 Ways Artificial Intelligence Will Impact Healthcare

Augment doctors

How Artificial Intelligence Improves Medical Imaging in Hospitals

Deep learning software, such as artificial intelligence, can improve

impact of AI-driven tools?

Prediction of clinical variables not always working

No algorithm/33 could predict cognitive scores in Alzheimer's (TADPOLE Challenge, Marinescu 2020)

Forecasts were very good for clinical diagnosis and ventricle volume -- on the other hand, predicting ADAS turned out to be very
difficult -- no team was able to generate forecasts that were significantly better than random guessing

Generated images are crude, not high-resolution, mostly 2D

Brain MRI generation (Han, 2018)

razvan@csail.mit.edu

Alzheimer's diagnosis accuracy just 42%

Alzheimer's diagnosis accuracy just 42%

Labels are categorical instead of continuous

► Alzheimer's diagnosis accuracy just 42%

Lack of good input data/signal

Limited contrast

Labels are categorical instead of continuous

Why are Machine Learning models not working on medical applications?

Lack of good labels

Alzheimer's diagnosis accuracy just 42%

Lack of good input data/signal

Limited contrast

Low-resolution

Labels are categorical instead of continuous

Solution: Unsupervised Learning of Continuous Dynamics = Disease Progression Modelling

Lack of good input data/signal

Solution: Image Reconstruction using Deep Generative Models

Outline

- 1. Disease progression modelling of Alzheimer's disease
 - 1.1 Towards unsupervised clustering of biomarker trajectories

2. Image Reconstruction using Deep Generative Models

3. Future work towards brain anatomy simulators

Outline

1. Disease progression modelling of Alzheimer's disease

1.1 Towards unsupervised clustering of biomarker trajectories

2. Image Reconstruction using Deep Generative Models

3. Future work towards brain anatomy simulators

► 46 million people affected worldwide

- ► No treatments available that stop or slow down cognitive decline
- ▶ Q: Why did clinical trials fail? A: Treatments were not administered early enough

► 46 million people affected worldwide

- ► No treatments available that stop or slow down cognitive decline
- ▶ Q: Why did clinical trials fail? A: Treatments were not administered early enough
- ▶ Q: How can we then identify subjects early in order to administer treatments?
- ► A: Disease progression model ...

Brain MRI

Brain MRI

Segmentation (hippocampus)

Early diagnosis

- Can now build population model
- Early diagnosis

Early diagnosis

- Can now build population model
- Early diagnosis
- More accurate by analyzing all brain regions

- Can now build population model
- Early diagnosis
- More accurate by analyzing all brain regions

- Can now build population model
- Early diagnosis
- More accurate by analyzing all brain regions

Aim: Build a disease progression model for vertexwise data

Aim: Move from segmentation-based analysis to vertexwise

vertex = point on the brain surface

Why:

- 1. Atrophy correlates with functional networks, which are spatially disconnected (Seeley et al., 2009)
 - Atrophy = breakdown of neurons
 - Functional network = connections between neurons
- 2. Better prediction and disease staging

Seeley et al., Neuron, 2009

Contribution: Model can estimate pathology evolution at each point on the brain surface

Razvan V. Marinescu

razvan@csail.mit.edu

$$s_{ij} = \alpha_i t_{ij} + \beta_i$$

$$s_{ij} = \alpha_i t_{ij} + \beta_i$$

- 2. Model trajectory of cortical thickness at one location I on the brain:
 - $p(V_l^{ij}|\alpha_i, \beta_i, \theta_k, \sigma_k) \sim N(f(\alpha_i t_{ij} + \beta_i; \theta_k), \sigma_k)$

$$s_{ij} = \alpha_i t_{ij} + \beta_i$$

2. Model trajectory of cortical thickness at one location I on the brain:

$$p(V_l^{ij}|\alpha_i,\beta_i,\theta_k,\sigma_k) \sim N(f(\alpha_i t_{ij}+\beta_i;\theta_k),\sigma_k)$$

3. Extend to all locations and subjects:

$$p(V, Z|\alpha, \beta, \theta, \sigma) = \prod_{l}^{L} \prod_{(i,j) \in I} N(V_{l}^{ij}|f(\alpha_{i}t_{ij} + \beta_{i}; \theta_{Z_{l}}), \sigma_{Z_{l}})$$

$$s_{ij} = \alpha_i t_{ij} + \beta_i$$

2. Model trajectory of cortical thickness at one location / on the brain:

$$p(V_l^{ij}|\alpha_i,\beta_i,\theta_k,\sigma_k) \sim N(f(\alpha_i t_{ij}+\beta_i;\theta_k),\sigma_k)$$

3. Extend to all locations and subjects:

$$p(V, Z | \alpha, \beta, \theta, \sigma) = \prod_{l}^{L} \prod_{(i,j) \in I} N(V_{l}^{ij} | f(\alpha_{i} t_{ij} + \beta_{i}; \theta_{Z_{l}}), \sigma_{Z_{l}})$$

4. Marginalise over the hidden variables Z_l (cluster assignments):

$$p(V|\alpha,\beta,\theta,\sigma) = \prod_{l=1}^{L} \sum_{k=1}^{K} p(Z_l = k) \prod_{(i,j) \in I} N(V_l^{ij}|f(\alpha_i t_{ij} + \beta_i;\theta_k), \sigma_k)$$

- ► Similar patterns of atrophy in independent Alzheimer's MRI datasets (ADNI vs DRC)
- ► Distinct patterns of atrophy in different diseases (Alzheimer's vs PCA) and modalities (MRI vs PET)

Marinescu et al., NeuroImage, 2019

Method: Tested the consistency of the spatial clustering in ADNI using 10-fold CV

Results: Good agreement in terms of spatial distribution (dice score 0.89)

Marinescu et al., Neuroimage, 2019

- ▶ We modelled the continuous progression of Alzheimer's disease and related dementias
- Used generative bayesian model that does not require labels (unsupervised)
- Plausible results on four different datasets
- ▶ However, such models require good quality data, to perform registration and extract disease markers
- ▶ How can we do such modelling for scans with limited resolution and contrast?

Outline

- 1. Disease progression modelling of Alzheimer's disease
 - 1.1 Towards unsupervised clustering of biomarker trajectories

2. Image Reconstruction using Deep Generative Models

3. Future work towards brain anatomy simulators

Razvan V. Marinescu

Aim: image reconstruction using *pre-trained* generator models

 Adapt the state-of-the-art StyleGAN2 for medical image reconstruction

MRI reconstruction

- Require large computational resources and data
- Are specific to particular corruption tasks
- Cannot deal with distribution shifts:
 - ▶ in inputs: e.g. older populations
 - ▶ in corruption type: e.g. change in blur kernel
- Are anti-causal, so they don't follow the data-generation process

Limitation 1: State-of-the-art DL methods have large computational requirements

- ► Requirements = Computation Time + Advanced Hardware + Large Datasets
- Most computation now runs on clouds

- Currently few labs/companies have the resources to train state-of-the-art models
 - ► StyleGAN2: 9 days on 4 GPUs
 - ► GPT-3: 355 years on single GPU
- Solutions moving forward:
 - Adapting previously-trained models
 - Combine smaller models into larger ones

- Distribution shifts happen all the time:
 - Changes in hospital scanners, protocols, software upgrades
 - Can be continuous: population getting older due to better healthcare
- ► Shifts can result in combinatorial effects in number of re-training instances!
- Compositionality is one potential solution

Without compositionality: **N x M**

Limitation 3: Models are anti-causal

- Existing model don't follow the data-generation process
 - Discriminative modelling easier than generative
- Causal modelling is the right solution to deal with distribution shifts

Recent models can perform image reconstruction using pre-trained generative models

Image2StyleGAN++ (Abdal et al, 2020)

- ▶ These methods can generalise for any corruption process, because they don't use an embedder network
- Cannot characterize uncertainty and recover multiple solutions
- ▶ We will aim to construct a Bayesian formulation that can fully characterize the posterior over all potential solutions

Method: We perform image reconstruction by combining two models

- 1. a pre-trained generator G (StyleGAN2)
- 2. a known forward corruption model f_1

Method: We perform image reconstruction by combining two models

- 1. a pre-trained generator G (StyleGAN2)
- 2. a known forward corruption model f_1

Method: We perform image reconstruction by combining two models

- 1. a pre-trained generator G (StyleGAN2)
- 2. a known forward corruption model f_1

Reconstructed image is given by computing the Bayesian maximum a-posteriori (MAP) estimate

► We optimise:

$$w^* = rg\max_w p(w)p(I|w)$$

For uninformative prior p(w) and Gaussian noise model (pixelwise independent), we get:

$$w^* = rgmin_w ||I - f \circ G(w)||_2^2$$

- ► This can be optimised with SGD
- Once we get w^* , the the reconstructed image is $G(w^*)$

► We started from the original StyleGAN2 inversion

- ► We started from the original StyleGAN2 inversion
- \blacktriangleright Yet the reconstruction was not good \rightarrow required several changes

$$w^*, \eta^* = \operatorname*{arg\,min}_{w,\eta} ||\phi(I) - \phi \circ f \circ G(w,\eta)||_2^2$$

- ► We started from the original StyleGAN2 inversion
- \blacktriangleright Yet the reconstruction was not good \rightarrow required several changes
 - remove noise layers

$$w^* = \operatorname*{arg\,min}_{w} ||\phi(I) - \phi \circ f \circ G(w)||_2^2$$

- ► We started from the original StyleGAN2 inversion
- \blacktriangleright Yet the reconstruction was not good \rightarrow required several changes
 - optimize latents at all resolutions

$$\mathbf{w} = w_1, ..., w_L$$
$$\mathbf{w}^* = \arg\min_{\mathbf{w}} ||\phi(I) - \phi \circ f \circ G(\mathbf{w})||_2^2$$

- ► We started from the original StyleGAN2 inversion
- \blacktriangleright Yet the reconstruction was not good \rightarrow required several changes
 - add pixelwise loss

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} ||\phi(I) - \phi \circ f \circ G(\mathbf{w})||_2^2 + ||I - f \circ G(\mathbf{w})||_2^2$$

- ► We started from the original StyleGAN2 inversion
- \blacktriangleright Yet the reconstruction was not good \rightarrow required several changes
 - gaussian prior on latents

$$\mathbf{w}^* = \underset{\mathbf{w}}{\arg\min} ||\phi(I) - \phi \circ f \circ G(\mathbf{w})||_2^2 + ||I - f \circ G(\mathbf{w})||_2^2 + \sum_i \left(\frac{w_i - \mu}{\sigma_i}\right)^2$$

- ► We started from the original StyleGAN2 inversion
- \blacktriangleright Yet the reconstruction was not good \rightarrow required several changes
 - ▶ force latents to be colinear

$$\mathbf{w}^* = \underset{\mathbf{w}}{\operatorname{arg\,min}} ||\phi(I) - \phi \circ f \circ G(\mathbf{w})||_2^2 + ||I - f \circ G(\mathbf{w})||_2^2 + \sum_i \left(\frac{w_i - \mu}{\sigma_i}\right)^2 - \sum_{i,j} \frac{w_i w_j^T}{|w_i||w_j|}$$

- ► We started from the original StyleGAN2 inversion
- \blacktriangleright Yet the reconstruction was not good \rightarrow required several changes
 - Analytically expressed the full likelihood (Marinescu et al, 2021)

$$\mathbf{w}^{*} = \underset{\mathbf{w}}{\arg\min} ||\phi(I) - \phi \circ f \circ G(\mathbf{w})||_{2}^{2} + ||I - f \circ G(\mathbf{w})||_{2}^{2} + \sum_{i} \left(\frac{w_{i} - \mu}{\sigma_{i}}\right)^{2} - \sum_{i,j} \frac{w_{i} w_{j}^{T}}{|w_{i}||w_{j}|}$$

- ▶ We achieve state-of-the-art (SOTA) results on small inputs resolutions 16x16
- ▶ On larger resolutions (>32x32), we achieve very good results, albeit not SOTA

Marinescu et al, arXiv, 2020

- ▶ We achieve state-of-the-art (SOTA) results on small inputs resolutions 16x16
- ▶ On larger resolutions (>32x32), we achieve very good results, albeit not SOTA

Marinescu et al, arXiv, 2020

- ▶ Best previous method (SN-PatchGAN, CVPR 2019) does not work for large masks
- Our method can "hypothesize" missing structure

- ▶ Best previous method (SN-PatchGAN, CVPR 2019) does not work for large masks
- Our method can "hypothesize" missing structure

- ► Three different datasets, at different resolutions
- ► Human study with 20 raters

Super-resolution

Dataset	BRGM	PULSE [36]	ESRGAN [48]	SRFBN [31]
$FFHQ 16^2$	0.24/25.66	0.29/27.14	0.35/29.32	0.33/22.07
$FFHQ 32^2$	0.30/18.93	0.48/42.97	0.29/23.02	0.23/12.73
$FFHQ 64^2$	0.36/16.07	0.53/41.31	0.26/18.37	0.23/9.40
FFHQ 128 ²	0.34/15.84	0.57/34.89	0.15/15.84	0.09/7.55
X-ray 16 ²	0.18/11.61	-	0.32/14.67	0.37/12.28
X-ray 32 ²	0.23/10.47	-	0.32/12.56	0.21/6.84
X-ray 64 ²	0.31/10.58	-	0.30/8.67	0.22/5.32
X-ray 128 ²	0.27/10.53	-	0.20/7.19	0.07/4.33
Brains 16 ²	0.12/12.42	-	0.34/22.81	0.33/12.57
Brains 32 ²	0.17 /11.08		0.31/14.16	0.18/6.80

Inpainting

	BRGM			SN-PatchGAN [50]				
Dataset	LPIPS	RMSE	PSNR	SSIM	LPIPS	RMSE	PSNR	SSIM
FFHQ	0.19	24.28	21.33	0.84	0.24	30.75	19.67	0.82
X-ray	0.13	13.55	27.47	0.91	0.20	27.80	22.02	0.86
Brains	0.09	8.65	30.94	0.88	0.22	24.74	21.47	0.75

Human evaluation

Dataset	BRGM	PULSE [36]	ESRGAN [48]	SRFBN [31]
FFHQ 16 ²	0.42	0.32	0.11	0.15
FFHQ 32^2	0.39	0.02	0.12	0.47
FFHQ 64^2	0.14	0.08	0.32	0.45
FFHQ 128 ²	0.14	0.10	0.39	0.38

► Variational inference can allows us to sample from the posterior distribution:

$$\theta^* = \operatorname*{arg\,min}_{\theta} \operatorname{\mathsf{KL}}\left[q(w|\theta)||p(w|I)
ight] = \operatorname*{arg\,min}_{\theta} \int q(w|\theta) \,\log\, rac{q(w|\theta)}{p(w)p(I|w)} dw$$

• We approximate the integral using Monte Carlo samples $w^{(i)}$ taken from $q(w|\theta)$

$$heta^* = rgmin_{ heta} \sum_{i=1}^n \log q(w^{(i)}| heta) - \log p(w^{(i)}) - \log p(I|w^{(i)})$$

Marinescu et. al., 2020
More examples using Variational Inference

Razvan V. Marinescu

- It can fail for images that are too dissimilar to the training ones
 - Because generator cannot extrapolate easily

Can be inconsistent with the input image

- Proposed a method for image reconstruction using pre-trained deep generative models
- Solution is given by the Bayesian MAP estimate
- State-of-the-art results on super-resolution and inpainting

Outline

- 1. Disease progression modelling of Alzheimer's disease
 - 1.1 Towards unsupervised clustering of biomarker trajectories

2. Image Reconstruction using Deep Generative Models

3. Future work towards brain anatomy simulators

Razvan V. Marinescu

Accurate diagnosis and prognosis through AI

AI to augment doctors

Biological simulators

Better and faster reconstruction of medical images Undersampled k-space Acquired Image

Simulator for brain anatomy from genetics:

- Using deep generative models
- Accounting for distributions shifts
- Following causal principles

Problem: Lack of good labels

Problem: Lack of good input data

Problem: Lack of good labels

Solution: Unsupervised Learning through Disease Progression Modelling

Problem: Lack of good input data

Solution: Image Reconstruction using Deep Generative Models

Problem: Lack of good labels

Solution: Unsupervised Learning through Disease Progression Modelling

Problem: Lack of good input data

Solution: Image Reconstruction using Deep Generative Models

Long-term vision

Accurate diagnosis and prognosis through AI

AI to augment doctors

Razvan V. Marinescu

razvan@csail.mit.edu

http://razvan.csail.mit.edu