Modelling the Neuroanatomical Progression of Alzheimers Disease and Posterior Cortical Atrophy

Răzvan Valentin Marinescu

Medical Vision Group, Massachusetts Institute of Technology

About me

- Grew up in Pitesti, Romania
- ► 2010-2014: Studied a 4-year MEng in Computer Science at Imperial College London
- ▶ 2014-2019: PhD in Medical Imaging at UCL (with Daniel Alexander)
- ▶ 2019: Postdoc at MIT with Pollina Golland (working on image analysis of stroke)

Subtype and Stage Inference (Young et al., submitted, 2017)

▶ 46 million people affected worldwide

► 46 million people affected worldwide

- No treatments available that stop or slow down cognitive decline
- ▶ Q: Why did clinical trials fail? A: Treatments were not administered early enough

▶ 46 million people affected worldwide

- ▶ No treatments available that stop or slow down cognitive decline
- ▶ Q: Why did clinical trials fail? A: Treatments were not administered early enough
- ▶ Q: How can we then identify subjects early in order to administer treatments?
- ► A: Biomarkers ...

Biomarker Evolution creates a Unique Disease Signature that can be used for Staging Individuals in Clinical Trials

- \blacktriangleright Accurate disease staging \rightarrow better patient stratification
- ▶ Problem: This is a "hypothetical" (i.e. qualitative) disease progression model
- Why construct a quantitative model?

Basic biological insight

- Basic biological insight
- Staging can help stratification in clinical trials

- Basic biological insight
- Staging can help stratification in clinical trials
- Differential diagnosis and prognosis

- Basic biological insight
- Staging can help stratification in clinical trials
- Differential diagnosis and prognosis

How can we build such a disease progression model?

Razvan V. Marinescu

Patients are at unknown disease stages

- Patients are at unknown disease stages
- X-axis are not the same (need to construct the disease stage axis)

- Patients are at unknown disease stages
- X-axis are not the same (need to construct the disease stage axis)

- Patients are at unknown disease stages
- X-axis are not the same (need to construct the disease stage axis)

- Patients are at unknown disease stages
- X-axis are not the same (need to construct the disease stage axis)

- Patients are at unknown disease stages
- X-axis are not the same (need to construct the disease stage axis)
- Biomarkers have different trajectory shapes
- Cohort is heterogenous
- Control population not well defined

1. Study the progression of atrophy in two diseases (using existing models):

- typical Alzheimer's Disease (tAD)
- Posterior Cortical Atrophy (PCA)

2. Develop novel disease progression models (DPMs)

$$p(X|S) = \prod_{j=1}^{J} \left[\sum_{k=0}^{N} p(k) \left(\prod_{i=1}^{k} p\left(x_{s(i),j} | \mathcal{E}_{s(i)} \right) \prod_{i=k+1}^{N} p\left(x_{s(i),j} | \neg \mathcal{E}_{s(i)} \right) \right) \right]$$
(1)

1. Modelled progression of PCA and tAD

3. Disease Knowledge Transfer across Neurodegenerative Diseases

2. Spatio-temporal Progression Modelling

4. TADPOLE Competition

3. Disease Knowledge Transfer across Neurodegenerative Diseases

2. Spatio-temporal Progression Modelling

4. TADPOLE Competition

Clinical question: Find the order in which GM regions become atrophied

- ► in PCA
- ► in tAD

Why? No previous studies modelled disease progression in PCA

Demographics:

▶ cohort from the Dementia Research Centre with uniquely large PCA population (70)

	# Subjects	Gender M/F	Age at baseline (years)	Years from onset (years)	
Controls	89	33/56	60.5 ± 11	-	
PCA	70	27/43	63.0 ± 7	4.4 ± 2.8	
AD	65	34/31	66.3 ± 8	4.8 ± 2.6	

Data: Structural MRI scans

Impact: the first major investigation of PCA disease progression

How? The Event-Based Model ...

- ► Event-Based Model (EBM): Fontejin et al., Neroimage, 2012.
- \blacktriangleright Aim: Region 1 \rightarrow Region 2 vs Region 2 \rightarrow Region 1

	Patient 1	Patient 2	Patient 3
Region 1	1.1	0.9	0.1
Region 2	0.95	0.0	0.05

- Event-Based Model (EBM): Fontejin et al., Neroimage, 2012.
- \blacktriangleright Aim: Region 1 \rightarrow Region 2 vs Region 2 \rightarrow Region 1

	Patient 1	Patient 2	Patient 3			Patient 1	Patient 2	Patient 3
Region 1	1.1	0.9	0.1	\longrightarrow	Region 1	normal	normal	abnormal
Region 2	0.95	0.0	0.05		Region 2	normal	abnormal	abnormal

- Event-Based Model (EBM): Fontejin et al., Neroimage, 2012.
- \blacktriangleright Aim: Region 1 \rightarrow Region 2 vs Region 2 \rightarrow Region 1

	Patient 1	Patient 2	Patient 3			Patient 1	Patient 2	Patient 3
Region 1	1.1	0.9	0.1	\longrightarrow	Region 1	normal	normal	abnormal
Region 2	0.95	0.0	0.05		Region 2	normal	abnormal	abnormal

- ► Event-Based Model (EBM): Fontejin et al., Neroimage, 2012.
- \blacktriangleright Aim: Region 1 \rightarrow Region 2 vs Region 2 \rightarrow Region 1

Estimated Sequence: Region 2 \rightarrow Region 1

- ► Event-Based Model (EBM): Fontejin et al., Neroimage, 2012.
- \blacktriangleright Aim: Region 1 \rightarrow Region 2 vs Region 2 \rightarrow Region 1

The EBM assumes a subject at stage k has first k biomarkers "abnormal" and the last N - k biomarkers "normal"

- Evaluate data likelihood under normal and abnormal distributions:
 - normal $p(x_{s(i),i}|\neg E_{s(i)})$
 - abnormal $p(x_{s(i),i}|E_{s(i)})$
- Compute likelihood of one subject *j* being at stage k given sequence S:

$$p(X_j|S,k) = \prod_{i=1}^{k} p\left(\mathsf{x}_{\mathsf{s}(i),j} | E_{\mathsf{s}(i)} \right) \prod_{i=k+1}^{N} p\left(\mathsf{x}_{\mathsf{s}(i),j} | \neg E_{\mathsf{s}(i)} \right)$$

Marginalise stage k: ►

$$p(X_j|S) = \sum_{k=0}^{N} p(k) \left(\prod_{i=1}^{k} p\left(\mathsf{x}_{\mathsf{s}(i),j} | \mathcal{E}_{\mathsf{s}(i)} \right) \prod_{i=k+1}^{N} p\left(\mathsf{x}_{\mathsf{s}(i),j} | \neg \mathcal{E}_{\mathsf{s}(i)} \right) \right)$$

► Extend to all subjects:

$$p(X|S) = \prod_{j=1}^{J} \left[\sum_{k=0}^{N} p(k) \left(\prod_{i=1}^{k} \frac{p\left(\mathsf{x}_{\mathfrak{s}(i),j} | \mathcal{E}_{\mathfrak{s}(i)}\right)}{\prod_{i=k+1}^{N} p\left(\mathsf{x}_{\mathfrak{s}(i),j} | \neg \mathcal{E}_{\mathfrak{s}(i)}\right)} \right) \right]$$

Sequence and uncertainty estimated with MCMC sampling

Razvan V Marinescu

- ▶ PCA \rightarrow early occipital and superior parietal atrophy
- $\blacktriangleright\,$ tAD \rightarrow early hippocampal and inferior temporal atrophy

Firth, Marinescu and Primativo, in first revision (Brain)

Firth, Marinescu and Primativo, in first revision (B

PCA Subtypes show Different Atrophy Progressions, providing Evidence for Heterogeneity within PCA

1. Basic visual impairment ightarrow early atrophy in occipital lobe

Initial hypotheses 2. Space perception impairment \rightarrow early atrophy in superior parietal lobe

3. Visuoperceptual impairment \rightarrow early atrophy in inferior temporal lobe

Firth, Marinescu and Primativo, in first revision (Brain)

The Differential Equation Model reconstructs Biomarker Trajectories from Short-term Longitudinal Measurements

Model Recapitulates Differences in PCA vs tAD Atrophy Progression

- PCA: rapid and extensive atrophy in occipital and parietal regions
- ▶ tAD: global atrophy pattern, with early hippocampal involvement

Firth, Marinescu and Primativo, in first revision (Brain)