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About me

» Grew up in Pitesti, Romania

» 2010-2014: Studied a 4-year MEng in Computer Science at Imperial College London
» 2014-2019: PhD in Medical Imaging at UCL (with Daniel Alexander)
» 2019: Postdoc at MIT with Pollina Golland (working on image analysis of stroke)
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Progression of Neurodegenerative Diseases (POND)
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POND Aim: Develop Computational Models for Disease Progression

Event-Based Model Differential Equation Model
(Fontejin et al., Neuroimage, 2012) (Oxtoby et al., submitted, 2017)
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Gaussian-Process Regression
(Lorenzi et al., IPMI, 2015)

Subtype and Stage Inference
(Young et al., submitted, 2017)
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POND Aim 2: Apply the Models to Distinct Neurodegenerative Diseases

typical AD

(Young et al.,
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(Wijeratne et al., Ann. Clin. Neurol;, 2018)
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Alzheimer's Disease is a Devastating Disease

» 46 million people affected worldwide

People living with dementia around the world
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» No treatments available that stop or slow down cognitive decline

» Q: Why did clinical trials fail? A: Treatments were not administered early enough
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Alzheimer's Disease is a Devastating Disease

» 46 million people affected worldwide
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» No treatments available that stop or slow down cognitive decline
» Q: Why did clinical trials fail? A: Treatments were not administered early enough

» Q: How can we then identify subjects early in order to administer treatments?

» A: Biomarkers ...
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Biomarker Evolution creates a Unique Disease Signature
that can be used for Staging Individuals in Clinical Trials
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» Accurate disease staging — better patient stratification
» Problem: This is a "hypothetical” (i.e. qualitative) disease progression model

» Why construct a quantitative model?
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Benefits of Quantitative Disease Progression Models
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» Basic biological insight
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Benefits of Quantitative Disease Progression Models
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» Basic biological insight

» Staging can help stratification in clinical trials
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Benefits of Quantitative Disease Progression Models
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» Basic biological insight
» Staging can help stratification in clinical trials

» Differential diagnosis and prognosis

Razvan V. Marinescu razvan@csail.mit.edu http://razvan.csail.mit.edu Disease Progression Modelling 8 /20



Benefits of Quantitative Disease Progression Models
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» Basic biological insight
» Staging can help stratification in clinical trials

» Differential diagnosis and prognosis

How can we build such a disease progression model?
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Building a Quantitative Disease Progression Model is difficult
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Building a Quantitative Disease Progression Model is difficult

what we have what we want

abnormal abnormal
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Challenges:

» Patients are at unknown disease stages
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Building a Quantitative Disease Progression Model is difficult

what we have what we want
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Challenges:

» Patients are at unknown disease stages

» X-axis are not the same (need to construct the disease stage axis)
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Building a Quantitative Disease Progression Model is difficult

Hippocampus

Hippocampus

Challenges:
» Patients are at unknown disease stages

» X-axis are not the same (need to construct the disease stage axis)
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Building a Quantitative Disease Progression Model is difficult
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» Patients are at unknown disease stages

X-axis are not the same (need to construct the disease stage axis)

| 4
» Biomarkers have different trajectory shapes
» Cohort is heterogenous

| 4

Control population not well defined
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My PhD Aim

1. Study the progression of atrophy in two diseases (using existing models):

P typical Alzheimer's Disease (tAD)
P Posterior Cortical Atrophy (PCA)

Stage 1 Stage 6 Stage 11 Stage 16 Stage 21 Stage 26 abnormal

— normal

2. Develop novel disease progression models (DPMs)

P(XIS) = T [0 p(K) (T P (sl Ex)) Tk P (i) )| (1)
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My PhD Contributions

1. Modelled progression of PCA and tAD 2. Spatio-temporal Progression Modelling

Stage 8 Stage 16 Stage 24
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3. Disease Knowledge Transfer 4. TADPOLE Competition
across Neurodegenerative Diseases
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Overview

1. Modelled progression of PCA and tAD 2. Spatio-temporal Progression Modelling
Stage 8 Stage 16 Stage 24

3. Disease Knowledge Transfer
across Neurodegenerative Diseases
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Clinical question: Find the order in which GM regions become atrophied
> in PCA
> in tAD

Why? No previous studies modelled disease progression in PCA

Demographics:
» cohort from the Dementia Research Centre with uniquely large PCA population (70)

Gender | Age at baseline| Years from

# Subjects M/F (years) onset (years)
Controls 89 33/56 60.5 £+ 11 -
PCA 70 27/43 63.0 £ 7 444+ 28
AD 65 34/31 66.3 + 8 48 + 26

Data: Structural MRI scans
Impact: the first major investigation of PCA disease progression

How? The Event-Based Model ...
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Key Idea: The Event-Based Model Estimates an Atrophy Sequence from

Informative Patient Snapshots

» Event-Based Model (EBM): Fontejin et al., Neroimage, 2012.
» Aim: Region 1 — Region 2 vs Region 2 — Region 1

| Patient 1|Patient 2|Patient 3
Region 1 1.1 0.9 0.1
Region 2| 0.95 0.0 0.05
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The EBM assumes a subject at stage k has first k biomarkers "abnormal” and the
last N — k biomarkers "normal”

» Evaluate data likelihood under normal and abnormal distributions:
» normal - p (xs(),;| = Es(i))
» abnormal - p (x| Es(1))

» Compute likelihood of one subject j being at stage k given sequence S:

p(XjlS, k) = Hp Xs H P Xs ‘ﬁE )

i=k+1

» Marginalise stage k:

N K N

p(Xil$) =D _p(k) [ TTp (enilEsy) TT P Gt mEai)

k=0 i=1 i=k+1

» Extend to all subjects:
k N
p(X|S) = H Zp(k HP (Xs(i).j | Es(iy) H P (xs(i).j| 7 Es(i))
j=1 | k=0 i=1 i=k+1

» Sequence and uncertainty estimated with MCMC sampling
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The EBM finds a Distinct Atrophy Sequence in PCA compared to tAD

» PCA — early occipital and superior parietal atrophy
» tAD — early hippocampal and inferior temporal atrophy

Stage 4 Stage 8 Stage 16 Stage 24 Stage 32
abnormal
PCA /f
E “ ' normal
Stage 4 Stage 8 Stage 16 Stage 24 Stage 32
Ei Ei abnormal
tAD /( 4 ;@'
(@i (@
h \ normal

Firth, Marinescu and Primativo, in first revision (Brain)
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Atrophy Patterns Resemble Previous Studies from the Literature

» PCA — early occipital and superior parietal atrophy
» tAD — early hippocampal and inferior temporal atrophy

Stage 4 Stage 8 Stage 16 Stage 24 Stage 32

Lehmann et al., 2012

/YC—J\\\> —— abnormal
N Al Q I
PCA é\f\(\;"’//% -4
Stage 4
/C\ abnormal
20 B 2D X2
tAD ﬁﬁ\\ ///VA (W I
@I Y Y T T
jﬁ;/ R¥:§“/ 4 ) normal

Firth, Marinescu and Primativo, in first revision (Brain)
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PCA Subtypes show Different Atrophy Progressions, providing Evidence for

Heterogeneity within PCA

Initial hypotheses

1. Basic
visual
impairment
(n=21)

2. Space
perception
impairment
(n=21)

3. Visuo-
perceptual
impairment
(n=22)

1. Basic visual impairment — early atrophy in occipital lobe
2. Space perception impairment — early atrophy in superior parietal lobe

3. Visuoperceptual impairment — early atrophy in inferior temporal lobe
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Firth, Marinescu and Primativo, in first revision (Brain)
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The Differential Equation Model reconstructs Biomarker Trajectories from
Short-term Longitudinal Measurements

What we want What we have
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Model Recapitulates Differences in PCA vs tAD Atrophy Progression

» PCA: rapid and extensive atrophy in occipital and parietal regions

» tAD: global atrophy pattern, with early hippocampal involvement

=== Hippocampus Entorhinal === \Whole Brain === Parietal
=== Frontal Occipital Temporal =« Ventricles
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Firth, Marinescu and Primativo, in first revision (Brain)
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