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Diffusion Models: Concept and Inspiration

▶ Inspired by nonequilibrium thermodynamics (Sohl-Dickstein et al., 2015).
▶ Forward Process: Gradually transforms structured data x0 ∼ pdata(x) into

noise.
▶ Perturbations mimic physical systems transitioning from order to disorder over

time.
▶ Reverse Process: Reconstructs original data distribution by learning to denoise.
▶ Goal: Generate high-quality samples (e.g., images, audio, video) from noise.
▶ The forward process is modeled by a stochastic differential equation (SDE),

where Bt is a standard Brownian motion defined on a filtered probability space
(Ω,F , {Ft}, P ).



Diffusion Models: Discrete Diffusion (DDPM)

▶ Denoising Diffusion Probabilistic Models (Ho et al., 2020).
▶ Forward Process: Discrete steps with Gaussian noise:

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI)

▶ βt: Noise schedule, 0 < βt < 1, increases over t = 1, . . . , T , chosen such that∏T
t=1(1− βt) > 0.

▶ Reverse Process: Learned Markov chain:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(t))

▶ Trains neural network to predict µθ , effectively denoising.
▶ We can also estimate the noise ϵθ instead of mean.



Denoising Diffusion Probabilistic Models



Forward and Reverse Processes



Diffusion Models: Applications

▶ Image Synthesis:

▶ High-resolution images (Song et al., 2021).
▶ Example: 256x256 images with fine details (edges, textures).
▶ Photorealistic generation, style transfer, inpainting.
▶ Models: DALL-E, Stable Diffusion, Imagen, Stable Diffusion 3.

▶ Audio Generation:

▶ Realistic waveforms (Kong et al., 2020).
▶ Example: Speech synthesis with natural harmonics.
▶ Music generation, sound effects, audio restoration.
▶ Models: WaveGrad, DiffWave.

▶ Text-to-Image Synthesis:

▶ Generating images from textual descriptions.
▶ Example: ”A cat painting in the style of Van Gogh.”
▶ Models: DALL-E 2, Midjourney

▶ Video Generation:

▶ Generating coherent video sequences.
▶ Example: Short clips with smooth motion.
▶ Models: Video Diffusion Models (VDM), Make-A-Video, Phenaki, Sora.

▶ Success hinges on accurate score function ∇x log pt(x).



Diffusion Models: Applications

▶ Medical Imaging:

▶ Synthetic medical images, quality enhancement.
▶ Example: Improved MRI or CT scan resolution.
▶ Anomaly detection, data augmentation.

▶ Molecular Generation:

▶ Drug discovery, molecular docking.
▶ Example: Diffusion-based docking (e.g., DiffDock).
▶ Models: DiffDock, GeoDiff, AlphaFold (protein folding inspiration).

▶ Weather Forecasting:

▶ Precipitation nowcasting, climate modelling.

▶ Financial Modelling:

▶ Synthetic time-series data, risk assessment.

▶ Other Domains:

▶ Robotics: Motion planning with diffusion policies.
▶ NLP: Text generation (e.g., Diffusion-LM).
▶ Gaming: Procedural content generation (DI-PCG).



Midjourney

In the style of Japanese anime, imagine an advertisement for ”9540” sneakers featuring a girl with white hair and
light brown eyes walking on a zebra crossing. She is holding her coffee in one hand while trying to pass people who

are walking quickly. The background features tall buildings. Her feet are wearing high-top canvas shoes that are
primarily orange in color. A man dressed in a black suit stands next to her, watching. The illustration has a dynamic

feel, reminiscent of detailed character illustrations



Diffusion Models: Mathematical Framework

▶ Forward SDE:

dxt = f(t, xt) dt+ g(t) dBt, x0 ∼ pdata(x)

▶ f(t, xt): Drift (deterministic evolution), assumed Lipschitz continuous in x
uniformly in t to ensure a unique strong solution (Øksendal, 2003, Theorem
5.2.1).

▶ g(t): Diffusion coefficient (noise scale), continuous and bounded, Bt: Standard
Brownian motion in Rd.

▶ Reverse SDE:

dxt = [f(t, xt)− g(t)2∇x log pt(xt)] dt+ g(t) dB̃t

▶ ∇x log pt(xt): Score function, critical for reversing noise, exists if pt is C1 and
positive.

▶ B̃t: Reverse-time Brownian motion, defined via time reversal on [0, T ].



Limitations of Linear Diffusion

▶ Smooth distributions to Gaussian, losing complex structures (e.g., multimodality).
▶ Can’t capture nonlinear dynamics (e.g., chaos, saturation).
▶ State-independent noise misses multiplicative effects (e.g., finance).
▶ Fixed diffusion path limits adaptability.



Motivations: Advantages of Nonlinear Diffusion Models

▶ Enhanced expressivity: models complex, non-Gaussian marginal distributions
(e.g., f(x) = −x3, g(x) = 1.)

▶ Adaptation to data geometry: captures complex manifold structures (e.g.,
f(x) = −x|x|, g(x) =

√
|x| adapts to curvature)

▶ Improved generative modelling for intricate distributions, utilised in advanced
models like Latent Diffusion Models



Challenges in Nonlinearity

▶ Nonlinear Fokker-Planck lacks closed-form solutions.
▶ Example: f(x) = −x3 requires numerical or probabilistic methods.
▶ Need advanced tools: Lie groups, Malliavin calculus, etc.
▶ Sets stage for Malliavin-Bismut framework.



Aim: Use Mallavin Calculus to help learn non-linear Diffusion Models

▶ Theorem: ∂k log p(y) = −E[δ(uk)|F = y] (Bismut-type formula).
▶ Why Malliavin Calculus?:

▶ Handles nonlinear diffusions and manifold geometries.
▶ Computes score functions probabilistically, bypassing explicit densities.
▶ Flexible as long as Malliavin derivatives are well-defined.

▶ Bridging to Machine Learning:
▶ Rigorous foundation for score estimation.
▶ Unified framework for general dynamics (linear, nonlinear, manifolds).
▶ Practical tools via Malliavin calculus for ML applications.

▶ Aim of Our Work:
▶ Build a rigorous, flexible framework for diffusion models.
▶ Enable any dynamics with Malliavin calculus as the backbone.
▶ Enhance machine learning models with theoretical advances.



Methods



Diffusion Models: Continuous vs. Discrete

Discrete (DDPM)
▶ Finite steps, predefined βt

▶ Example: xt =
√
αtx0 +

√
1− αtϵ,

where αt =
∏t

s=1(1− βs),
ϵ ∼ N (0, I)

Continuous
▶ SDE-based, f(t, x) and g(t) flexible
▶ Advantages: Analytical tractability,

customisable noise schedules
▶ Challenges: Requires stochastic

calculus (stochastic integrals)



Time Reversal of SDEs: Concept

▶ Forward: dxt = f(t, xt) dt+ g(t) dBt.
▶ Reverse:

dxt = [−f(T − t, xt) + g(T − t)2∇x log pT−t(xt)] dt+ g(T − t) dB̃t

▶ Enables sampling: Noise → Data.
▶ Relies on accurate score estimation.
▶ The reverse process is Markovian, with transition densities governed by the

Kolmogorov equations.



The Score Function: Definition and Intuition

▶ Definition: s(x, t) = ∇x log pt(x), where pt(x) is the density of xt in L1(Rd).
▶ Intuition: Gradient of log-density, points to higher probability.
▶ Gaussian case: pt(x) = N (µt,Σt),

s(x, t) = −Σ−1
t (x− µt)

▶ Example: 1D, µt = 0, Σt = 1, s(x, t) = −x.



The Score Function: Role in Reverse Process

▶ Guides reverse SDE:

dxt = [f(t, xt)− g(t)2s(x, t)] dt+ g(t) dB̃t

▶ Corrects drift to align xt with pt(x).
▶ Example: VP SDE, f = − 1

2
β(t)x, g =

√
β(t).

▶ Critical for generative sampling from noise.



The Score Function: Estimation Challenges

▶ Unknown pt(x) requires score estimation.
▶ Methods: Score Matching, DSM, SSM (next section).
▶ Challenge: Singularity in γ−1(t) as t → 0.
▶ Example: VP SDE instability near initial time.
▶ The singularity arises from the Malliavin matrix γ(t) having eigenvalues → 0,

requiring det γ(t) > 0 almost surely for invertibility.



Score Matching: Overview

▶ Introduced by Hyvärinen (2005) for unnormalised statistical models.
▶ Objective: Minimise the Fisher divergence via the score matching objective:

J(θ) =
1

2
Ex∼data

[
∥∇x log pθ(x) −∇x log p(x)∥2

]
▶ Avoids computing the partition function using integration by parts.
▶ They obtain a Laplacian-based estimator:

E[∥∇x log pθ(x)∥2 + 2tr(∇2
x log pθ(x))]

▶ Impractical for high-dimensional data (e.g., images, audio) without
approximations.



Sliced Score Matching: Objective

▶ Introduced by Song et al. (2019): A scalable method to estimate score functions
by projecting gradients onto random vectors v.

▶ Objective:

JSSM(θ) = Ex∼pdata,v∼N (0,I)

[
1

2

(
v⊤∇x log pθ(x)

)2
+ v⊤∇2

x log pθ(x)v

]
▶ Intuition: Approximates the score matching objective

E[∥∇x log pθ(x)∥2 + 2tr(∇2
x log pθ(x))] using random projections, making it

computationally efficient.
▶ Uses Hutchinson’s trace estimator: E[v⊤∇2

x log pθ(x)v] = tr(∇2
x log pθ(x)),

reducing complexity from O(d2) to O(d).
▶ Random vectors v ∼ N (0, I) enable Monte Carlo estimation of the expectation.
▶ Pros: Scales to high dimensions (e.g., d = 106).
▶ Cons: The estimator has Monte Carlo variance due to random projections.



Denoising Score Matching: Objective

▶ Introduced by Vincent (2011): Perturbs data x with a noise kernel qσ(x̃|x).
▶ Idea: Match the model’s score on perturbed data to the perturbation kernel’s

score, approximating the original score matching objective
▶ Objective:

JDSM(θ) = Ex∼pdataEx̃∼qσ(·|x)

[
∥∇x̃ log pθ(x̃)−∇x̃ log qσ(x̃|x)∥2

]
▶ For Gaussian noise: qσ(x̃|x) = N (x̃;x, σ2I), so:

∇x̃ log qσ(x̃|x) = −
x̃− x

σ2

▶ Computational advantage: Avoids Hessian computation, scaling linearly as O(d)
per sample.



Limitations: Score Matching Techniques

▶ High Computational Cost of Score Matching: It requires computing
second-order derivatives or using trace estimators, which is expensive in high
dimensions.

▶ Challenges with Sliced Score Matching: This method introduces
approximation errors and does not easily handle the time-dependent score
functions in diffusion models and lacks the proper conditioning.

▶ Limitations of Denoising Score Matching: It relies on knowing the transition
probability, which is often difficult to obtain in nonlinear diffusion models.

▶ Solution: Malliavin Calculus ...



Malliavin Calculus: Historical Context

▶ Developed by Paul Malliavin in the 1970s to investigate the regularity properties
of solutions to hypoelliptic partial differential equations (PDEs), a class of
equations where solutions can be smooth even if the coefficients lack full
ellipticity.

▶ Motivation: To establish conditions ensuring that the probability density function
pF of a functional F (Bt) of Brownian motion Bt (e.g., F (Bt) =

∫ t
0 Bs ds, the

time integral of Brownian motion) is smooth and differentiable, rather than merely
continuous or singular.

▶ Stochastic Partial Differential Equations (SPDEs): Offers powerful tools to prove
the existence of solutions and assess their smoothness, critical for modelling
random phenomena in physics and engineering.

▶ Finance: Applied in option pricing, especially in advanced models incorporating
stochastic volatility (e.g., Heston model) or discontinuous jumps (e.g., Lévy
processes), enhancing pricing accuracy.

▶ Introduced the Malliavin derivative D, an operator that generalises differentiation
to functionals defined on Wiener space (the space of continuous functions
representing Brownian motion paths). The derivative DF of a functional F takes
values in L2([0, T ]), the space of square-integrable functions over [0, T ],
enabling calculus-based methods in stochastic analysis.



Malliavin Calculus: Wiener Space Definition

▶ Ω = C0([0,∞);R):
▶ Continuous paths ω : [0,∞) → R with ω(0) = 0.
▶ A Polish space (separable and completely metrisable), ideal for supporting

the Wiener measure.
▶ Wiener measure P:

▶ A probability measure on Ω defined on the Borel σ-algebra generated by
the topology of uniform convergence on compact sets.

▶ The coordinate process Bt(ω) = ω(t) is a Brownian motion.
▶ Uniquely determined by the finite-dimensional distributions of Bt,

consistent with Kolmogorov’s extension theorem.
▶ Cameron-Martin space HCM :

▶ Subspace of Ω: absolutely continuous h with ḣ ∈ L2([0,∞);R).
▶ Inner product: ⟨h, g⟩HCM

=
∫∞
0 ḣ(t)ġ(t) dt.

▶ Cameron-Martin theorem:
▶ For h ∈ HCM , the shifted measure Ph(A) = P(A− h) is equivalent to P

(mutually absolutely continuous, quasi-invariant).
▶ For h /∈ HCM , Ph and P are singular (mutually exclusive).
▶ HCM is a Hilbert space, central to Malliavin calculus.



Malliavin Calculus: Smooth Functionals

▶ Let H = L2([0,∞);R), the space of square-integrable functions.
▶ Definition: A smooth functional is of the form F = f(B(h1), . . . , B(hn)), where:

▶ f ∈ C∞
b (Rn) (smooth with bounded derivatives),

▶ hi ∈ H.
▶ B(hi) =

∫∞
0 hi(t) dBt, the Wiener integral, a Gaussian random variable in

L2(Ω,P).
▶ These functionals are dense in L2(Ω,P), forming a basis for Malliavin operators.



Malliavin Calculus: Malliavin Derivative Definition

▶ For a smooth functional F = f(B(h1), . . . , B(hn)), with
hi ∈ H = L2([0,∞);R):

DtF =
n∑

i=1

∂f

∂xi
(B(h1), . . . , B(hn))hi(t)

▶ DF : Ω → H, where H = L2([0,∞);R), measures sensitivity to perturbations
in Bt.

▶ Example: For F = BT , DtF = 1[0,T ](t), which belongs to H.

▶ D is a Fréchet derivative in the directions of HCM , well-defined if f ∈ C1
b (R

n).



Malliavin Calculus: Skorokhod Integral

▶ Adjoint: E[Fδ(u)] = E[⟨DF, u⟩H ], u ∈ Dom(δ).
▶ For ut =

∑
Fjhj(t),

δ(u) =
∑

FjB(hj)− ⟨DFj , hj⟩H

▶ δ extends the Itô integral to L2(Ω;H), with Dom(δ) dense in L2(Ω;H).



Malliavin Calculus: Malliavin Matrix

▶ For F = (F 1, . . . , Fm),

γF = (⟨DF i, DF j⟩H)i,j

▶ Nondegeneracy: P (det γF > 0) = 1 implies F has a density in C∞(Rm).

▶ 1D: γF =
∫ T
0 (DtF )2 dt.



Malliavin Calculus: Density Regularity

▶ Malliavin’s criterion: F ∈ D∞, E[| det γF |−p] < ∞ for some p > 1.
▶ Implies pF is smooth (Nualart, 2018).
▶ Key to score function derivation.



Bismut Formula: Historioal Development

▶ Jean-Michel Bismut (1980s):
▶ Introduced the Bismut formula for the gradient of the heat semigroup on

Riemannian manifolds, expressed via stochastic processes.
▶ Linked stochastic analysis to differential geometry, aiding large deviation

principles and index theorems.
▶ Elworthy-Li (1994):

▶ Extended the formula to stochastic flows driven by stochastic differential
equations (SDEs), using Malliavin calculus.

▶ Applied it to derivatives of expectations for diverse diffusion processes and
functionals.

▶ “Bismut-type” Formulae:
▶ Refers to extensions of Bismut’s work, distinct from the original heat kernel

context.
▶ Used in fields like financial sensitivity analysis (e.g., option pricing Greeks).

▶ Probabilistic Representation:
▶ Computes the gradient of expectations, e.g., ∇E[φ(Xt)], where Xt is a

diffusion process solving an SDE.
▶ Bismut Formula (Simplified):

∇E[φ(Xt)] = E [φ(Xt) ·Wt]

where Wt is a stochastic weight derived from Malliavin calculus or the first
variation process and φ is a functional.

▶ Key Idea: Expresses sensitivity to initial conditions probabilistically,
avoiding explicit density calculations.



Bismut Formula: Covering Vector Fields

▶ Definition: For a random vector F = (F1, . . . , Fm), covering vector fields
uk ∈ L2(Ω;H) (for k = 1, . . . ,m) satisfy:

⟨DFi, uk⟩H = δi,k (1 if i = k, 0 otherwise)

where DFi is the Malliavin derivative of Fi, and H is the Cameron-Martin space
of perturbation directions.

▶ Intuition: Think of uk as ”arrows” in the space of Brownian paths. Each uk

perturbs the noise so that only the k-th component of F changes, ”covering” all
directions like a coordinate system. This lets us measure how F varies in each
direction independently.

▶ Purpose: They enable the Bismut formula to compute gradients:

∂kE[φ(F )] = E[φ(F )δ(uk)]

linking deterministic derivatives to stochastic integrals.
▶ Example: For F = XT , the solution to an SDE at time T ,

uk =
∑m

j=1(γ
−1
XT

)k,jDXT,j , where γXT
= (⟨DXT,i, DXT,j⟩H)i,j is the

Malliavin covariance matrix.
▶ Properties: The uk ∈ L2(Ω;H) ensure that the map DF : H → Rm is

surjective, which holds when the Malliavin covariance matrix γF is invertible,
allowing perturbations in all directions of F ’s range.



Bismut-Type Formula

▶ Theorem: ∂k log p(y) = −E[δ(uk)|F = y].
▶ Probabilistic expression for score.
▶ How can we arrive at a computable formula for this expression?

▶ Pick a suitable covering vector field uk.
▶ Reduce the Skorokhod integral δ(uk) to an Itô integral for computational

tractability.
▶ Rewrite Malliavin derivatives DF in terms of variation processes, derived

from the SDE.



SDE and First Variation Process

▶ Consider the linear SDE:

dXt = b(t)Xt dt+ σ(t) dBt

where Xt ∈ Rm, Bt is a standard Brownian motion in Rd, σ(t) ∈ Rm×d,
b(t) ∈ Rm×m, and X0 ∼ pdata. The drift term b(t)Xt dt is linear in Xt.

▶ The first variation process Yt =
∂Xt
∂x0

satisfies:

dYt = ∂x[b(t)Xt]Yt dt+ ∂xσ(t)Yt dBt

Since σ(t) is independent of Xt, ∂xσ(t) = 0, and ∂x[b(t)Xt] = b(t), reducing it
to the ODE:

dYt = b(t)Yt dt, Y0 = Im

▶ This becomes:
dYt

dt
= b(t)Yt

with solution:

Yt = exp

(∫ t

0
b(s) ds

)
assuming b(t) commutes if matrix-valued.

▶ Example: If b(t) = −Im, then:

Yt = e−tIm

▶ Properties: Yt is continuous in t, invertible, and bounded in L∞([0, T ]) if b(t) is
integrable.



Malliavin-Bismut: Malliavin Matrix Derivation

▶ The Malliavin matrix is defined as:

γXT
=

∫ T

0
DrXT (DrXT )⊤ dr

where DrXT is the Malliavin derivative of XT , showing its sensitivity to
Brownian motion perturbations at time r.

▶ For a linear SDE dXt = b(t)Xt dt+ σ(t) dBt:

DrXT = YTY −1
r σ(r)

with Yt = exp
(∫ t

0 b(s) ds
)

, the first variation process.

▶ Substituting and simplifying:

γXT
= YT

(∫ T

0
Y −1
r σ(r)σ(r)⊤(Y −1

r )⊤ dr

)
Y ⊤
T

resembling the covariance structure of XT ’s Malliavin derivatives.



Malliavin-Bismut: Covering Vector Field Construction

▶ uk(t) =
∑m

j=1 γ
−1
XT

(k, j)DtX
j
T .

▶ Verification: ⟨DXi
T , uk⟩H = δi,k.

▶ Ensures directional sensitivity.



Malliavin-Bismut: Skorokhod to Itô Reduction

▶ Since uk(t) is adapted (due to deterministic coefficients),

δ(uk) =

∫ T

0
uk(t) dBt

▶ Simplify: δ(uk) = [γ−1
XT

(XT − YTX0)]k.

▶ The reduction holds in L2(Ω) as uk is Ft-adapted, aligning with the Itô integral’s
definition.



Malliavin-Bismut: Score Function Formula

▶ Bismut formula: ∂k log p(y) = −E[δ(uk)|XT = y].
▶ Final form:

∇y log p(y) = −γ−1
XT

(y − YTE[X0|XT = y])

▶ ∇ log p ∈ L2(Rm) if p(y) is sufficiently smooth (e.g., p ∈
H1(Rm)) and E[X0|XT = y] is well-defined..



Malliavin-Bismut: Regression Insight

▶ Score reduces to estimating E[X0|XT = y].
▶ Transforms score matching into regression problem.
▶ Simplifies computation via neural networks.
▶ The regression is well-posed in L2(Ω), assuming X0 and XT are jointly

integrable.



Covariance in Malliavin and Fokker-Planck

▶ Linear SDE: dXt = b(t)Xt dt+ σ(t) dWt, with initial condition X0 = x0.
▶ Fokker-Planck Approach:

▶ Solves the PDE for the density pt(x) = N (µt,Σt), where:

µt = Ytx0, Σt = Yt

(∫ t

0
Y −1
s σ(s)σ(s)⊤(Y −1

s )⊤ ds

)
Y ⊤
t

▶ Yt = exp
(∫ t

0 b(s) ds
)

is the fundamental matrix.

▶ Malliavin Approach:
▶ Malliavin matrix: γXT

=
∫ T
0 DrXT (DrXT )⊤ dr, where

DrXT = YTY −1
r σ(r) is the Malliavin derivative.

▶ Compute:

γXT
= YT

(∫ T

0
Y −1
r σ(r)σ(r)⊤(Y −1

r )⊤ dr

)
Y ⊤
T

▶ Result: γXT
= ΣT , showing that the Malliavin matrix (stochastic sensitivity)

equals the Fokker-Planck covariance (statistical variance).



Score Function in Malliavin and Fokker-Planck

▶ Fokker-Planck Score: For pt(x) = N (Ytx0,Σt) with deterministic X0 = x0:

∇x log pt(x) = −Σ−1
t (x− Ytx0)

▶ Malliavin-Bismut Score: General form for XT at time T :

∇y log p(y) = −γ−1
XT

(y − YTE[X0|XT = y])

▶ Equivalence (Deterministic X0):
▶ If X0 = x0 is fixed, then E[X0|XT = y] = x0.
▶ Thus: ∇y log p(y) = −γ−1

XT
(y − YT x0).

▶ Since γXT
= ΣT , this equals −Σ−1

T (y − YT x0), matching the
Fokker-Planck score.



Malliavin-Bismut: Algorithm Overview

▶ Algorithm: Malliavin Diffusion Framework.
▶ Steps:

1. Simulate forward SDE: Xt.
2. Compute γ−1

Xt
and Yt.

3. Train NN for E[X0|Xt, t].
4. Sample reverse SDE with score.



Malliavin-Bismut: Practical Considerations

▶ NN predicts E[X0|Xt, t] (e.g., U-Net).
▶ Cost: Matrix inversion of γXt per time step.
▶ Scales with dimension m and time steps N .



VP SDE, sub-VP SDE Definition

▶ VP SDE: dXt = − 1
2
β(t)Xt dt+

√
β(t) dBt.

▶ β(t) = βmin + (βmax − βmin)
t
T

, β ∈ C([0, T ]).

▶ sub-VP SDE: dXt = − 1
2
β(t)Xt dt+

√
β(t)(1− e−2

∫ t
0 β(s) ds) dBt.

▶ Variance-preserving: Maintains signal variance.



Observation: Singularity in VP SDE

▶ Result: γ−1(t) = O
(
1
t

)
as t → 0.

▶ From: γ(t) ≈ βmintI.
▶ Causes numerical issues in score near t = 0.
▶ γ(t)’s eigenvalues scale as t, with ∥γ−1(t)∥ → ∞ in L∞([0, ϵ]), violating

uniform ellipticity.



Observation: Singularity in Sub-VP SDE

▶ Result: γ−1(t) = O
(

1
t2

)
as t → 0.

▶ From: γ(t) ≈ β4
mint

2I.
▶ Stronger singularity than VP.



An Experiment: Checkerboard



Implications and Mitigations

▶ Implications: Instability near t = 0 affects sampling.
▶ Mitigations:

▶ Regularise σ(t): Linear growth near 0.
▶ Adjust drift: Add damping term.
▶ Tikhonov regularisation: Perturb γ(t).

▶ Regularisation ensures γ(t) is invertible in L2([0, T ]), akin to Tikhonov’s method
for ill-posed operators.



Malliavin Score vs Analytical Score



Discussion: Summary of Contributions

▶ Developed Malliavin-Bismut framework for linear diffusion generative models.
▶ A promising framework for nonlinear diffusion generative models (next work)
▶ Reduced score matching to regression problem.
▶ Analysed singularities: VP O(1/t), Sub-VP O(1/t2).



Conclusions: Future Work

▶ Extend to nonlinear SDEs (Part II).
▶ Implement in generative tasks (e.g., image synthesis).
▶ Explore regularisation for stability.



Conclusions: Broader Impact

▶ Enhances robustness of diffusion models.
▶ Enables nonlinear modelling with stochastic tools.
▶ Encourages Malliavin calculus in ML research.



Thank You
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