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Diffusion Models: Concept and Inspiration

v

Inspired by nonequilibrium thermodynamics (Sohl-Dickstein et al., 2015).

Forward Process: Gradually transforms structured data zo ~ pgata () into
noise.

Perturbations mimic physical systems transitioning from order to disorder over
time.

Reverse Process: Reconstructs original data distribution by learning to denoise.
Goal: Generate high-quality samples (e.g., images, audio, video) from noise.

The forward process is modeled by a stochastic differential equation (SDE),
where B is a standard Brownian motion defined on a filtered probability space
(Q, F,{F:}, P).

Forward SDE (data — noise)
dx = f(x,t)dt + g(t)dw 4)@
scor function ]
dx = (6,8 - £ fF oge) -+ (00w @

Reverse SDE (noise — data)




Diffusion Models: Discrete Diffusion (DDPM)

» Denoising Diffusion Probabilistic Models (Ho et al., 2020).
» Forward Process: Discrete steps with Gaussian noise:

g(zt|zi—1) = N(zt; /1 — Brae—1, BeI)

» 3:: Noise schedule, 0 < B¢ < 1, increases overt = 1,...,T, chosen such that
M=, a1 -8 >o.
» Reverse Process: Learned Markov chain:

po(zi—1|ze) = N(@e—1; po(2t,t), Zo(t))

» Trains neural network to predict pg, effectively denoising.
» We can also estimate the noise ¢y instead of mean.



Denoising Diffusion Probabilistic Models

Forward Diffusion Process
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Forward and Reverse Processes

—— Stochastic process

—— Reverse stochastic process




Diffusion Models: Applications

> Image Synthesis:

» High-resolution images (Song et al., 2021).

» Example: 256x256 images with fine details (edges, textures).
» Photorealistic generation, style transfer, inpainting.

» Models: DALL-E, Stable Diffusion, Imagen, Stable Diffusion 3.

» Audio Generation:

» Realistic waveforms (Kong et al., 2020).

» Example: Speech synthesis with natural harmonics.
» Music generation, sound effects, audio restoration.
» Models: WaveGrad, DiffWave.

v

Text-to-Image Synthesis:

> Generating images from textual descriptions.
» Example: "A cat painting in the style of Van Gogh.”
» Models: DALL-E 2, Midjourney

v

Video Generation:

» Generating coherent video sequences.
» Example: Short clips with smooth motion.
» Models: Video Diffusion Models (VDM), Make-A-Video, Phenaki, Sora.

v

Success hinges on accurate score function V log pt ().



Diffusion Models: Applications

» Medical Imaging:

» Synthetic medical images, quality enhancement.
» Example: Improved MRI or CT scan resolution.
» Anomaly detection, data augmentation.

» Molecular Generation:

» Drug discovery, molecular docking.
» Example: Diffusion-based docking (e.g., DiffDock).
> Models: DiffDock, GeoDiff, AlphaFold (protein folding inspiration).

» Weather Forecasting:

> Precipitation nowcasting, climate modelling.
» Financial Modelling:

» Synthetic time-series data, risk assessment.
» Other Domains:

» Robotics: Motion planning with diffusion policies.
» NLP: Text generation (e.g., Diffusion-LM).
» Gaming: Procedural content generation (DI-PCG).



Midjourney

In the style of Japanese anime, imagine an advertisement for "9540” sneakers featuring a girl with white hair and
light brown eyes walking on a zebra crossing. She is holding her coffee in one hand while trying to pass people who
are walking quickly. The background features tall buildings. Her feet are wearing high-top canvas shoes that are
primarily orange in color. A man dressed in a black suit stands next to her, watching. The illustration has a dynamic
feel, reminiscent of detailed character illustrations



Diffusion Models: Mathematical Framework

» Forward SDE:
dzy = f(t, ) dt + g(t) dBt, 0 ~ pdata(®)

> f(t,z¢): Drift (deterministic evolution), assumed Lipschitz continuous in x
uniformly in ¢ to ensure a unique strong solution (Jksendal, 2003, Theorem
5.2.1).

» g(t): Diffusion coefficient (noise scale), continuous and bounded, B;: Standard
Brownian motion in R?.

> Reverse SDE:
day = [f(t,21) — g(t)*Va logpe(we)] dt + g(t) dBy
> V. logp:(x+): Score function, critical for reversing noise, exists if p; is C* and

positive.
» B,: Reverse-time Brownian motion, defined via time reversal on [0,T].



Limitations of Linear Diffusion

Smooth distributions to Gaussian, losing complex structures (e.g., multimodality).
Can’t capture nonlinear dynamics (e.g., chaos, saturation).

State-independent noise misses multiplicative effects (e.g., finance).

Fixed diffusion path limits adaptability.

vvyyvyypy



Motivations: Advantages of Nonlinear Diffusion Models

» Enhanced expressivity: models complex, non-Gaussian marginal distributions
(eg. f(z) = —2®, g(z) = 1)

» Adaptation to data geometry: captures complex manifold structures (e.g.,
f(z) = —z|z|, g(z) = \/|=| adapts to curvature)

> Improved generative modelling for intricate distributions, utilised in advanced
models like Latent Diffusion Models



Challenges in Nonlinearity

Nonlinear Fokker-Planck lacks closed-form solutions.

Example: f(x) = —3 requires numerical or probabilistic methods.
Need advanced tools: Lie groups, Malliavin calculus, etc.

Sets stage for Malliavin-Bismut framework.

vvyyvyypy



Aim: Use Mallavin Calculus to help learn non-linear Diffusion Models

v

Theorem: 9y log p(y) = —E[6(ug)|F = y] (Bismut-type formula).
Why Malliavin Calculus?:

» Handles nonlinear diffusions and manifold geometries.
» Computes score functions probabilistically, bypassing explicit densities.
> Flexible as long as Malliavin derivatives are well-defined.

Bridging to Machine Learning:
> Rigorous foundation for score estimation.

» Unified framework for general dynamics (linear, nonlinear, manifolds).
» Practical tools via Malliavin calculus for ML applications.

» Aim of Our Work:
» Build a rigorous, flexible framework for diffusion models.

» Enable any dynamics with Malliavin calculus as the backbone.
» Enhance machine learning models with theoretical advances.

v

v



Methods



Diffusion Models: Continuous vs. Discrete

Discrete (DDPM)

> Finite steps, predefined 3
> Example: z; = J/arzo + V1 — aie,

where at = Hi:l(l - ﬁs)y
e~ N(0,1)

Continuous

>
| 4

>

SDE-based, f(t,z) and g(t) flexible
Advantages: Analytical tractability,
customisable noise schedules
Challenges: Requires stochastic
calculus (stochastic integrals)



Time Reversal of SDEs: Concept

v

Forward: dz: = f(t,z¢) dt + g(t) dBs.
Reverse:

dry = [~ f(T — t, 1) + g(T — t)>Va log pr—¢ (w¢)] dt + g(T — t) dBy

Enables sampling: Noise — Data.
Relies on accurate score estimation.

The reverse process is Markovian, with transition densities governed by the
Kolmogorov equations.



The Score Function: Definition and Intuition

v

Definition: s(x,t) = V, log p;(z), where p;(x) is the density of z; in L (R).
Intuition: Gradient of log-density, points to higher probability.
Gaussian case: pi(z) = N (e, 3t),

vy

s(@,t) = =2 M@ - m)

v

Example: 1D, pt =0, X¢ =1, s(z,t) = —=x.



The Score Function: Role in Reverse Process

» Guides reverse SDE:

dry = [f(t,z¢) — g(1f)23(m7 t)] dt + g(t) dB;

v

Corrects drift to align ¢ with p;(x).
Example: VP SDE, f = —18(t)z, g = v/B().
Critical for generative sampling from noise.

vy



The Score Function: Estimation Challenges

vVvyVvyYyvyy

Unknown p¢(x) requires score estimation.

Methods: Score Matching, DSM, SSM (next section).
Challenge: Singularity in v~1(¢) as t — 0.

Example: VP SDE instability near initial time.

The singularity arises from the Malliavin matrix v(t) having eigenvalues — 0,
requiring det v(¢) > 0 almost surely for invertibility.



Score Matching: Overview

» Introduced by Hyvarinen (2005) for unnormalised statistical models.
» Obijective: Minimise the Fisher divergence via the score matching objective:

1
J(0) = S Eordata [V logpo(z) — Ve logp(a)|?]

» Avoids computing the partition function using integration by parts.
» They obtain a Laplacian-based estimator:

E[[|V log pg(x)||* + 2tr(V3 log pe ()]

» Impractical for high-dimensional data (e.g., images, audio) without
approximations.



Sliced Score Matching: Objective

» Introduced by Song et al. (2019): A scalable method to estimate score functions
by projecting gradients onto random vectors v.

» Obijective:
1 2
Jssm(8) = Egnpyaa, v (0,T) {5 (VTVz 10gp0(96)) +v V2 logpy(z)v

> Intuition: Approximates the score matching objective
E[||V log pg ()]|2 + 2tr(V2 log pe ()] using random projections, making it
computationally efficient.

» Uses Hutchinson’s trace estimator: E[v T V2 log pg (z)v] = tr(V2 log pg (x)),
reducing complexity from O(d?) to O(d).

» Random vectors v ~ AN (0, I) enable Monte Carlo estimation of the expectation.
Pros: Scales to high dimensions (e.g., d = 109).
» Cons: The estimator has Monte Carlo variance due to random projections.

v



Denoising Score Matching: Objective

» Introduced by Vincent (2011): Perturbs data = with a noise kernel ¢, (Z|x).

> ldea: Match the model’s score on perturbed data to the perturbation kernel's
score, approximating the original score matching objective

» Obijective:
Ipsm(0) = EzmpgaaEsmg, (-|2) [vac log pg (%) — Vz log qa(ﬂ@”ﬂ

» For Gaussian noise: q, (#|z) = N (&;z,02I), so:

T —x

V3 log qo (F|z) = ——

[

» Computational advantage: Avoids Hessian computation, scaling linearly as O(d)
per sample.



Limitations: Score Matching Techniques

» High Computational Cost of Score Matching: It requires computing
second-order derivatives or using trace estimators, which is expensive in high
dimensions.

» Challenges with Sliced Score Matching: This method introduces
approximation errors and does not easily handle the time-dependent score
functions in diffusion models and lacks the proper conditioning.

» Limitations of Denoising Score Matching: It relies on knowing the transition
probability, which is often difficult to obtain in nonlinear diffusion models.

» Solution: Malliavin Calculus ...



Malliavin Calculus: Historical Context

» Developed by Paul Malliavin in the 1970s to investigate the regularity properties
of solutions to hypoelliptic partial differential equations (PDEs), a class of
equations where solutions can be smooth even if the coefficients lack full
ellipticity.

» Motivation: To establish conditions ensuring that the probability density function
pr of a functional F(B;) of Brownian motion B; (e.g., F'(B;) = fg B ds, the
time integral of Brownian motion) is smooth and differentiable, rather than merely
continuous or singular.

» Stochastic Partial Differential Equations (SPDEs): Offers powerful tools to prove
the existence of solutions and assess their smoothness, critical for modelling
random phenomena in physics and engineering.

» Finance: Applied in option pricing, especially in advanced models incorporating
stochastic volatility (e.g., Heston model) or discontinuous jumps (e.g., Lévy
processes), enhancing pricing accuracy.

> Introduced the Malliavin derivative D, an operator that generalises differentiation
to functionals defined on Wiener space (the space of continuous functions
representing Brownian motion paths). The derivative DF’ of a functional F' takes
values in L?([0, T]), the space of square-integrable functions over [0, 77,
enabling calculus-based methods in stochastic analysis.



Malliavin Calculus: Wiener Space Definition

v

Q = Cu([0,0); R):
» Continuous paths w : [0, c0) — R with w(0) = 0.
> A Polish space (separable and completely metrisable), ideal for supporting

the Wiener measure.

» Wiener measure P:

» A probability measure on 2 defined on the Borel o-algebra generated by
the topology of uniform convergence on compact sets.

» The coordinate process B:(w) = w(t) is a Brownian motion.

» Uniquely determined by the finite-dimensional distributions of B,
consistent with Kolmogorov’s extension theorem.

» Cameron-Martin space Heo s
> Subspace of Q: absolutely continuous h with h € L2([0,00); R).
> Inner product: (h, g) iy, = Jo© h(E)g(t) dt.

» Cameron-Martin theorem:

» For h € Hcy, the shifted measure Py, (A) = P(A — h) is equivalent to P
(mutually absolutely continuous, quasi-invariant).

» For h ¢ Hcoayg, Pp, and P are singular (mutually exclusive).

» Heay is a Hilbert space, central to Malliavin calculus.



Malliavin Calculus: Smooth Functionals

» Let H = L?([0,0); R), the space of square-integrable functions.
» Definition: A smooth functional is of the form F = f(B(h1),..., B(hy)), where:

> f e Cp°(R™) (smooth with bounded derivatives),
> h; € H.
> B(hi) = [;° hi(t) dBt, the Wiener integral, a Gaussian random variable in
L2(Q,P).
» These functionals are dense in L2(Q, P), forming a basis for Malliavin operators.



Malliavin Calculus: Malliavin Derivative Definition

» For a smooth functional F' = f(B(h1), ..., B(hxn)), with
hi € H= L*([0,00); R):

DiF =3 2L (Bn),.., B
i=1 """

> DF:Q — H,where H = L%([0,00); R), measures sensitivity to perturbations
in Bz.
> Example: For F' = Br, DiF = 1[g 1 (t), which belongs to H.

» D is a Fréchet derivative in the directions of Hq s, well-defined if f € C,} (R™).



Malliavin Calculus: Skorokhod Integral

» Adjoint: E[F§(u)] = E[(DF,u)g], u € Dom(4).
» Forus = Zthj(t),

5(u) = F;B(h;) — (DFj, hj)u

> § extends the It6 integral to L2(Q; H), with Dom(4) dense in L2(Q; H).



Malliavin Calculus: Malliavin Matrix

» ForF = (Fi,....,F™),
vr = ((DF*,DF7) )i ;

» Nondegeneracy: P(detvyr > 0) = 1 implies F' has a density in C>°(R™).
> 1D:vp = [i (DF)? dt.



Malliavin Calculus: Density Regularity

» Malliavin’s criterion: F' € D*°, E[| det yr|~P] < oo for some p > 1.
» Implies pr is smooth (Nualart, 2018).
» Key to score function derivation.



Bismut Formula: Historioal Development

» Jean-Michel Bismut (1980s):
» Introduced the Bismut formula for the gradient of the heat semigroup on
Riemannian manifolds, expressed via stochastic processes.
» Linked stochastic analysis to differential geometry, aiding large deviation
principles and index theorems.
» Elworthy-Li (1994):
» Extended the formula to stochastic flows driven by stochastic differential
equations (SDEs), using Malliavin calculus.
> Applied it to derivatives of expectations for diverse diffusion processes and
functionals.
> “Bismut-type” Formulae:
> Refers to extensions of Bismut’s work, distinct from the original heat kernel
context.
» Used in fields like financial sensitivity analysis (e.g., option pricing Greeks).
» Probabilistic Representation:
» Computes the gradient of expectations, e.g., VE[p(X¢)], where X is a
diffusion process solving an SDE.
» Bismut Formula (Simplified):

VE[p(X¢)] = E [p(Xt) - Wi]

where W% is a stochastic weight derived from Malliavin calculus or the first
variation process and ¢ is a functional.

> Key Idea: Expresses sensitivity to initial conditions probabilistically,
avoiding explicit density calculations.



Bismut Formula: Covering Vector Fields

» Definition: For a random vector F = (F1, ..., Fim), covering vector fields
up € L2(; H) (for k = 1,...,m) satisfy:

(DF;,uk)g = 8;,1  (1if i = k, 0 otherwise)

where DF; is the Malliavin derivative of F;, and H is the Cameron-Martin space
of perturbation directions.

» Intuition: Think of uj, as "arrows” in the space of Brownian paths. Each uy
perturbs the noise so that only the k-th component of F' changes, "covering” all
directions like a coordinate system. This lets us measure how F’ varies in each
direction independently.

» Purpose: They enable the Bismut formula to compute gradients:
ORE[p(F)] = E[p(F)d(u)]

linking deterministic derivatives to stochastic integrals.

» Example: For F' = X, the solution to an SDE at time T,
U = E;n:ﬂ%;;)k,jDXT,j, where YXp = (<DXT,Z'7 DXT,j)H)'L',j is the
Malliavin covariance matrix.

> Properties: The u;, € L?(Q; H) ensure that the map DF : H — R™ is
surjective, which holds when the Malliavin covariance matrix vz is invertible,
allowing perturbations in all directions of F’s range.



Bismut-Type Formula

» Theorem: 9y logp(y) = —E[6(ug)|F = y].
» Probabilistic expression for score.
» How can we arrive at a computable formula for this expression?

» Pick a suitable covering vector field u.
» Reduce the Skorokhod integral §(uy) to an Itd integral for computational

tractability.
» Rewrite Malliavin derivatives D F' in terms of variation processes, derived

from the SDE.



SDE and First Variation Process

» Consider the linear SDE:
dXi = b(t)Xt dt + O‘(t) dB¢

where X; € R™, By is a standard Brownian motion in R?, o (t) € R™*4,
b(t) € R™*™ and Xo ~ pgata. The drift term b(t) X; dt is linear in X;.

» The first variation process Y; = ?9);5 satisfies:

dY; = 8 [b(t)X4]Y; dt + 00 (t)Y: dBy

Since o(t) is independent of X, 9,0 (t) = 0, and 9 [b(t)X¢] = b(t), reducing it
to the ODE:
dYy = b(t))/t dt7 Yo =1Im

» This becomes:
dYy

dt

Y: = exp (/Ot b(s) ds)

assuming b(t) commutes if matrix-valued.
» Example: If b(t) = — I, then:

= b(t)Vs

with solution:

Y; =e 'y

» Properties: Y; is continuous in ¢, invertible, and bounded in L ([0, T7) if b(t) is
integrable.



Malliavin-Bismut: Malliavin Matrix Derivation

» The Malliavin matrix is defined as:
T
VX = / D Xp(DyXp)" dr
0

where D, X is the Malliavin derivative of X7, showing its sensitivity to
Brownian motion perturbations at time r.
» For alinear SDE dX; = b(t)X¢ dt + o(t) dBy:
D, X7 =YrY, lo(r)
with Y; = exp (fg b(s) ds), the first variation process.
» Substituting and simplifying:

v =ve Yoo T YT ar) i

resembling the covariance structure of X’s Malliavin derivatives.



Malliavin-Bismut: Covering Vector Field Construction

> w(t) = 7y vxo (K, 5) DX
> Verification: (DX, ui) g = 6; -
» Ensures directional sensitivity.



Malliavin-Bismut: Skorokhod to 1td6 Reduction

> Since ug(t) is adapted (due to deterministic coefficients),
T
Sw) = [ wn(®)dBy
0
> Simplify: §(ux) = [vx. (X7 — Y7 Xo0)]k-

» The reduction holds in L2(92) as uy, is Fi-adapted, aligning with the 1t6 integral’s
definition.



Malliavin-Bismut: Score Function Formula

» Bismut formula: 9 log p(y) = —E[6(ug)| X1 = y].
» Final form:
Vylogp(y) = —vx. (y — YTE[Xo| X1 = y])

> Viogp € L2(R™) if p(y) is sufficiently smooth (e.g., p €
HY(R™)) and E[Xo| X7 = y] is well-defined..



Malliavin-Bismut: Regression Insight

vvyyypwy

Score reduces to estimating E[Xo| X7 = y].
Transforms score matching into regression problem.
Simplifies computation via neural networks.

The regression is well-posed in L2(Q2), assuming X, and X are jointly
integrable.



Covariance in Malliavin and Fokker-Planck

» Linear SDE: dX; = b(¢)X; dt 4 o(t) dW¢, with initial condition X¢ = zo.
» Fokker-Planck Approach:
» Solves the PDE for the density p;(z) = N (¢, X¢), where:

t
pe=Yiao, Se=vi ([ V0o T O00 N as) v
0

> Y =exp (f(f b(s) ds) is the fundamental matrix.

» Malliavin Approach:
> Malliavin matrix: vx,. = fOT D X7 (DrX7)T dr, where
D, X1 = YrY,"o(r) is the Malliavin derivative.
» Compute:

v =ve ([ Y oo ()T (v )T ar) vi

> Result: vx,, = X7, showing that the Malliavin matrix (stochastic sensitivity)
equals the Fokker-Planck covariance (statistical variance).



Score Function in Malliavin and Fokker-Planck

» Fokker-Planck Score: For p;(z) = N (Yizo, £¢) with deterministic X = zo:
V2 log pi(z) = 72;1($ — Yizo)
» Malliavin-Bismut Score: General form for X at time 7:
Vylogp(y) = —vx. (v — YrE[Xo| X7 = y])
» Equivalence (Deterministic X):
> If Xy = xo is fixed, then ]E[XolXT = y] = Ig.
» Thus: Vy logp(y) = “Yxr (y — Yrzo).

> Since vx, = Er, this equals —X7' (y — Yrxo), matching the
Fokker-Planck score.



Malliavin-Bismut: Algorithm Overview

» Algorithm: Malliavin Diffusion Framework.
» Steps:

1.

2.
3.
4.

Simulate forward SDE: X;.
Compute v and Y;.

Train NN for E[X¢|X¢, t].
Sample reverse SDE with score.



Malliavin-Bismut: Practical Considerations

» NN predicts E[Xo|X¢, t] (e.9., U-Net).
» Cost: Matrix inversion of vx, per time step.
» Scales with dimension m and time steps N.



VP SDE,

v

v

vy

sub-VP SDE Definition

VP SDE: dX; = — 3 8(t) X¢ dt + \/B(t) dB:.
B(t) = Bmin + (Bmax — Bmin) %, B € C([0,T).

sub-VP SDE: dX; = —% (t) Xt dt + \/B(t)(l —e2J5 B 4s) dBy.
Variance-preserving: Maintains signal variance.




Observation: Singularity in VP SDE

e A1 _ 1
Result: y~1(t) = O (1) ast — 0.
From: ’Y(t) ~ ﬂmintI-
Causes numerical issues in score near ¢t = 0.

v(t)’s eigenvalues scale as ¢, with ||y ~1(t)|| — oo in L>°([0, €]), violating
uniform ellipticity.

vvyyywy



Observation: Singularity in Sub-VP SDE

» Result: yv~1(¢t) =0 (%2) ast— 0.
> From: y(t) = B4, 1.
» Stronger singularity than VP.



An Experiment: Checkerboard

SDEType.VE - Time: 1.00

7.54

5.0

Particles
Emm Drift Direction
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—5.04
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Implications and Mitigations

» Implications: Instability near ¢ = 0 affects sampling.
> Mitigations:
» Regularise o(¢): Linear growth near 0.
» Adjust drift: Add damping term.
» Tikhonov regularisation: Perturb ~(¢).
» Regularisation ensures ~(t) is invertible in L2([0, T]), akin to Tikhonov’s method
for ill-posed operators.



Malliavin Score vs Analytical Score
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Discussion: Summary of Contributions

» Developed Malliavin-Bismut framework for linear diffusion generative models.
» A promising framework for nonlinear diffusion generative models (next work)
» Reduced score matching to regression problem.

» Analysed singularities: VP O(1/t), Sub-VP O(1/t2).



Conclusions: Future Work

» Extend to nonlinear SDEs (Part II).
» Implement in generative tasks (e.g., image synthesis).
» Explore regularisation for stability.



Conclusions: Broader Impact

» Enhances robustness of diffusion models.
» Enables nonlinear modelling with stochastic tools.
» Encourages Malliavin calculus in ML research.



Thank You
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