## Malliavin-Bismut Score Function: Linear Case

Ehsan Mirafzali Daniele Venturi Razvan Marinescu

Department of Computer Science Department of Applied Mathematics University of California, Santa Cruz

#### Outline

- Introduction to Score-Based Diffusion Models
- Time Reversal of SDEs
- The Score Function
- The Fokker-Planck Equation
- Motivations for Nonlinear Diffusion Models
- Current Score Matching Techniques
- Limitations of Current Methods
- Malliavin Calculus
- Bismut Formula
- Malliavin-Bismut Framework for Linear SDEs
- Experiments and Results
- Discussion and Conclusions

#### Diffusion Models: Concept and Inspiration

- ► Inspired by nonequilibrium thermodynamics (Sohl-Dickstein et al., 2015).
- ► Forward Process: Gradually transforms structured data x<sub>0</sub> ~ p<sub>data</sub>(x) into noise.
- Perturbations mimic physical systems transitioning from order to disorder over time.
- ► Reverse Process: Reconstructs original data distribution by learning to denoise.
- ► Goal: Generate high-quality samples (e.g., images, audio, video) from noise.
- The forward process is modeled by a stochastic differential equation (SDE), where B<sub>t</sub> is a standard Brownian motion defined on a filtered probability space (Ω, F, {F<sub>t</sub>}, P).



#### Diffusion Models: Discrete Diffusion (DDPM)

- Denoising Diffusion Probabilistic Models (Ho et al., 2020).
- Forward Process: Discrete steps with Gaussian noise:

$$q(x_t|x_{t-1}) = \mathcal{N}(x_t; \sqrt{1 - \beta_t} x_{t-1}, \beta_t I)$$

- ▶  $\beta_t$ : Noise schedule,  $0 < \beta_t < 1$ , increases over t = 1, ..., T, chosen such that  $\prod_{t=1}^{T} (1 \beta_t) > 0$ .
- Reverse Process: Learned Markov chain:

$$p_{\theta}(x_{t-1}|x_t) = \mathcal{N}(x_{t-1}; \mu_{\theta}(x_t, t), \Sigma_{\theta}(t))$$

- Trains neural network to predict μ<sub>θ</sub>, effectively denoising.
- We can also estimate the noise  $\epsilon_{\theta}$  instead of mean.

#### **Denoising Diffusion Probabilistic Models**



### Forward and Reverse Processes

#### **Diffusion Models: Applications**

#### Image Synthesis:

- High-resolution images (Song et al., 2021).
- Example: 256x256 images with fine details (edges, textures).
- Photorealistic generation, style transfer, inpainting.
- Models: DALL-E, Stable Diffusion, Imagen, Stable Diffusion 3.

#### Audio Generation:

- Realistic waveforms (Kong et al., 2020).
- Example: Speech synthesis with natural harmonics.
- Music generation, sound effects, audio restoration.
- Models: WaveGrad, DiffWave.

#### Text-to-Image Synthesis:

- Generating images from textual descriptions.
- Example: "A cat painting in the style of Van Gogh."
- Models: DALL-E 2, Midjourney

#### Video Generation:

- Generating coherent video sequences.
- Example: Short clips with smooth motion.
- Models: Video Diffusion Models (VDM), Make-A-Video, Phenaki, Sora.
- Success hinges on accurate score function  $\nabla_x \log p_t(x)$ .

#### **Diffusion Models: Applications**

#### Medical Imaging:

- Synthetic medical images, quality enhancement.
- Example: Improved MRI or CT scan resolution.
- Anomaly detection, data augmentation.

#### Molecular Generation:

- Drug discovery, molecular docking.
- Example: Diffusion-based docking (e.g., DiffDock).
- Models: DiffDock, GeoDiff, AlphaFold (protein folding inspiration).

#### Weather Forecasting:

Precipitation nowcasting, climate modelling.

#### Financial Modelling:

Synthetic time-series data, risk assessment.

#### Other Domains:

- Robotics: Motion planning with diffusion policies.
- ► NLP: Text generation (e.g., Diffusion-LM).
- Gaming: Procedural content generation (DI-PCG).

#### Midjourney



In the style of Japanese anime, imagine an advertisement for "9540" sneakers featuring a girl with white hair and light brown eyes walking on a zebra crossing. She is holding her coffee in one hand while trying to pass people who are walking quickly. The background features tall buildings. Her feet are wearing high-top canvas shoes that are primarily orange in color. A man dressed in a black suit stands next to her, watching. The illustration has a dynamic feel, reminiscent of detailed character illustrations

#### Diffusion Models: Mathematical Framework

#### Forward SDE:

$$dx_t = f(t, x_t) dt + g(t) dB_t, \quad x_0 \sim p_{\mathsf{data}}(x)$$

- ► f(t, x<sub>t</sub>): Drift (deterministic evolution), assumed Lipschitz continuous in x uniformly in t to ensure a unique strong solution (Øksendal, 2003, Theorem 5.2.1).
- g(t): Diffusion coefficient (noise scale), continuous and bounded,  $B_t$ : Standard Brownian motion in  $\mathbb{R}^d$ .
- Reverse SDE:

$$dx_t = [f(t, x_t) - g(t)^2 \nabla_x \log p_t(x_t)] dt + g(t) d\tilde{B}_t$$

- ▶  $\nabla_x \log p_t(x_t)$ : Score function, critical for reversing noise, exists if  $p_t$  is  $C^1$  and positive.
- $\tilde{B}_t$ : Reverse-time Brownian motion, defined via time reversal on [0, T].

#### Limitations of Linear Diffusion

- Smooth distributions to Gaussian, losing complex structures (e.g., multimodality).
- Can't capture nonlinear dynamics (e.g., chaos, saturation).
- State-independent noise misses multiplicative effects (e.g., finance).
- Fixed diffusion path limits adaptability.

#### Motivations: Advantages of Nonlinear Diffusion Models

- Enhanced expressivity: models complex, non-Gaussian marginal distributions (e.g.,  $f(x) = -x^3$ , g(x) = 1.)
- Adaptation to data geometry: captures complex manifold structures (*e.g.*,  $f(x) = -x|x|, g(x) = \sqrt{|x|}$  adapts to curvature)
- Improved generative modelling for intricate distributions, utilised in advanced models like Latent Diffusion Models

#### Challenges in Nonlinearity

- Nonlinear Fokker-Planck lacks closed-form solutions.
- Example:  $f(x) = -x^3$  requires numerical or probabilistic methods.
- ► Need advanced tools: Lie groups, Malliavin calculus, etc.
- Sets stage for Malliavin-Bismut framework.

Aim: Use Mallavin Calculus to help learn non-linear Diffusion Models

- **Theorem**:  $\partial_k \log p(y) = -\mathbb{E}[\delta(u_k)|F = y]$  (Bismut-type formula).
- Why Malliavin Calculus?:
  - Handles nonlinear diffusions and manifold geometries.
  - Computes score functions probabilistically, bypassing explicit densities.
  - Flexible as long as Malliavin derivatives are well-defined.

#### Bridging to Machine Learning:

- Rigorous foundation for score estimation.
- Unified framework for general dynamics (linear, nonlinear, manifolds).
- Practical tools via Malliavin calculus for ML applications.

#### Aim of Our Work:

- Build a rigorous, flexible framework for diffusion models.
- Enable any dynamics with Malliavin calculus as the backbone.
- Enhance machine learning models with theoretical advances.

# Methods

#### Diffusion Models: Continuous vs. Discrete

## **Discrete (DDPM)**

- Finite steps, predefined  $\beta_t$
- Example:  $x_t = \sqrt{\alpha_t} x_0 + \sqrt{1 \alpha_t} \epsilon$ , where  $\alpha_t = \prod_{s=1}^t (1 - \beta_s)$ ,  $\epsilon \sim \mathcal{N}(0, I)$

## Continuous

- SDE-based, f(t, x) and g(t) flexible
- Advantages: Analytical tractability, customisable noise schedules
- Challenges: Requires stochastic calculus (stochastic integrals)

#### Time Reversal of SDEs: Concept

- Forward:  $dx_t = f(t, x_t) dt + g(t) dB_t$ .
- Reverse:

$$dx_t = [-f(T-t, x_t) + g(T-t)^2 \nabla_x \log p_{T-t}(x_t)] dt + g(T-t) d\tilde{B}_t$$

- Enables sampling: Noise  $\rightarrow$  Data.
- Relies on accurate score estimation.
- The reverse process is Markovian, with transition densities governed by the Kolmogorov equations.

#### The Score Function: Definition and Intuition

- **Definition**:  $s(x,t) = \nabla_x \log p_t(x)$ , where  $p_t(x)$  is the density of  $x_t$  in  $L^1(\mathbb{R}^d)$ .
- Intuition: Gradient of log-density, points to higher probability.
- Gaussian case:  $p_t(x) = \mathcal{N}(\mu_t, \Sigma_t)$ ,

$$s(x,t) = -\Sigma_t^{-1}(x - \mu_t)$$

• Example: 1D,  $\mu_t = 0$ ,  $\Sigma_t = 1$ , s(x, t) = -x.

#### The Score Function: Role in Reverse Process

Guides reverse SDE:

$$dx_t = [f(t, x_t) - g(t)^2 s(x, t)] dt + g(t) d\tilde{B}_t$$

- Corrects drift to align  $x_t$  with  $p_t(x)$ .
- Example: VP SDE,  $f = -\frac{1}{2}\beta(t)x$ ,  $g = \sqrt{\beta(t)}$ .
- Critical for generative sampling from noise.

#### The Score Function: Estimation Challenges

- Unknown  $p_t(x)$  requires score estimation.
- Methods: Score Matching, DSM, SSM (next section).
- Challenge: Singularity in  $\gamma^{-1}(t)$  as  $t \to 0$ .
- Example: VP SDE instability near initial time.
- The singularity arises from the Malliavin matrix  $\gamma(t)$  having eigenvalues  $\rightarrow 0$ , requiring det  $\gamma(t) > 0$  almost surely for invertibility.

#### Score Matching: Overview

- Introduced by Hyvärinen (2005) for unnormalised statistical models.
- Objective: Minimise the Fisher divergence via the score matching objective:

$$J(\theta) = \frac{1}{2} \mathbb{E}_{x \sim \mathsf{data}} \left[ \| \nabla_x \log p_{\theta}(x) - \nabla_x \log p(x) \|^2 \right]$$

- Avoids computing the partition function using integration by parts.
- They obtain a Laplacian-based estimator:

$$\mathbb{E}[\|\nabla_x \log p_\theta(x)\|^2 + 2\mathsf{tr}(\nabla_x^2 \log p_\theta(x))]$$

 Impractical for high-dimensional data (e.g., images, audio) without approximations.

#### Sliced Score Matching: Objective

- Introduced by Song et al. (2019): A scalable method to estimate score functions by projecting gradients onto random vectors v.
- Objective:

$$J_{\mathsf{SSM}}(\theta) = \mathbb{E}_{x \sim p_{\mathsf{data}}, \mathbf{v} \sim \mathcal{N}(0, I)} \left[ \frac{1}{2} \left( \mathbf{v}^\top \nabla_x \log p_{\theta}(x) \right)^2 + \mathbf{v}^\top \nabla_x^2 \log p_{\theta}(x) \mathbf{v} \right]$$

- Intuition: Approximates the score matching objective E[||∇<sub>x</sub> log p<sub>θ</sub>(x)||<sup>2</sup> + 2tr(∇<sup>2</sup><sub>x</sub> log p<sub>θ</sub>(x))] using random projections, making it computationally efficient.
- Uses Hutchinson's trace estimator:  $\mathbb{E}[\mathbf{v}^\top \nabla_x^2 \log p_\theta(x)\mathbf{v}] = \text{tr}(\nabla_x^2 \log p_\theta(x))$ , reducing complexity from  $O(d^2)$  to O(d).
- ▶ Random vectors  $\mathbf{v} \sim \mathcal{N}(0, I)$  enable Monte Carlo estimation of the expectation.
- **Pros**: Scales to high dimensions (e.g.,  $d = 10^6$ ).
- Cons: The estimator has Monte Carlo variance due to random projections.

#### Denoising Score Matching: Objective

- Introduced by Vincent (2011): Perturbs data x with a noise kernel  $q_{\sigma}(\tilde{x}|x)$ .
- Idea: Match the model's score on perturbed data to the perturbation kernel's score, approximating the original score matching objective
- Objective:

$$J_{\mathsf{DSM}}(\theta) = \mathbb{E}_{x \sim p_{\mathsf{data}}} \mathbb{E}_{\tilde{x} \sim q_{\sigma}(\cdot|x)} \left[ \|\nabla_{\tilde{x}} \log p_{\theta}(\tilde{x}) - \nabla_{\tilde{x}} \log q_{\sigma}(\tilde{x}|x)\|^2 \right]$$

► For Gaussian noise:  $q_{\sigma}(\tilde{x}|x) = \mathcal{N}(\tilde{x}; x, \sigma^2 I)$ , so:

$$\nabla_{\tilde{x}} \log q_{\sigma}(\tilde{x}|x) = -\frac{\tilde{x} - x}{\sigma^2}$$

 Computational advantage: Avoids Hessian computation, scaling linearly as O(d) per sample.

#### Limitations: Score Matching Techniques

- High Computational Cost of Score Matching: It requires computing second-order derivatives or using trace estimators, which is expensive in high dimensions.
- Challenges with Sliced Score Matching: This method introduces approximation errors and does not easily handle the time-dependent score functions in diffusion models and lacks the proper conditioning.
- Limitations of Denoising Score Matching: It relies on knowing the transition probability, which is often difficult to obtain in nonlinear diffusion models.

Solution: Malliavin Calculus ...

#### Malliavin Calculus: Historical Context

- Developed by Paul Malliavin in the 1970s to investigate the regularity properties of solutions to hypoelliptic partial differential equations (PDEs), a class of equations where solutions can be smooth even if the coefficients lack full ellipticity.
- Motivation: To establish conditions ensuring that the probability density function  $p_F$  of a functional  $F(B_t)$  of Brownian motion  $B_t$  (e.g.,  $F(B_t) = \int_0^t B_s ds$ , the time integral of Brownian motion) is smooth and differentiable, rather than merely continuous or singular.
- Stochastic Partial Differential Equations (SPDEs): Offers powerful tools to prove the existence of solutions and assess their smoothness, critical for modelling random phenomena in physics and engineering.
- Finance: Applied in option pricing, especially in advanced models incorporating stochastic volatility (e.g., Heston model) or discontinuous jumps (e.g., Lévy processes), enhancing pricing accuracy.
- Introduced the Malliavin derivative D, an operator that generalises differentiation to functionals defined on Wiener space (the space of continuous functions representing Brownian motion paths). The derivative DF of a functional F takes values in L<sup>2</sup>([0, T]), the space of square-integrable functions over [0, T], enabling calculus-based methods in stochastic analysis.

#### Malliavin Calculus: Wiener Space Definition

- $\Omega = C_0([0,\infty);\mathbb{R})$ :
  - Continuous paths  $\omega : [0, \infty) \to \mathbb{R}$  with  $\omega(0) = 0$ .
  - A Polish space (separable and completely metrisable), ideal for supporting the Wiener measure.
- ► Wiener measure P:
  - A probability measure on Ω defined on the Borel σ-algebra generated by the topology of uniform convergence on compact sets.
  - The coordinate process  $B_t(\omega) = \omega(t)$  is a Brownian motion.
  - ► Uniquely determined by the finite-dimensional distributions of *B*<sub>t</sub>, consistent with Kolmogorov's extension theorem.
- Cameron-Martin space  $H_{CM}$ :
  - Subspace of  $\Omega$ : absolutely continuous h with  $\dot{h} \in L^2([0,\infty);\mathbb{R})$ .
  - Inner product:  $\langle h, g \rangle_{H_{CM}} = \int_0^\infty \dot{h}(t) \dot{g}(t) dt$ .
- Cameron-Martin theorem:
  - For h ∈ H<sub>CM</sub>, the shifted measure P<sub>h</sub>(A) = P(A − h) is equivalent to P (mutually absolutely continuous, quasi-invariant).
  - For  $h \notin H_{CM}$ ,  $\mathbb{P}_h$  and  $\mathbb{P}$  are singular (mutually exclusive).
  - $H_{CM}$  is a Hilbert space, central to Malliavin calculus.

#### Malliavin Calculus: Smooth Functionals

- Let  $H = L^2([0,\infty); \mathbb{R})$ , the space of square-integrable functions.
- **Definition**: A smooth functional is of the form  $F = f(B(h_1), \ldots, B(h_n))$ , where:

▶ 
$$f \in C_b^{\infty}(\mathbb{R}^n)$$
 (smooth with bounded derivatives),  
▶  $h_i \in H$ .

- $B(h_i) = \int_0^\infty h_i(t) \, dB_t$ , the Wiener integral, a Gaussian random variable in  $L^2(\Omega, \mathbb{P})$ .
- These functionals are dense in  $L^2(\Omega, \mathbb{P})$ , forming a basis for Malliavin operators.

#### Malliavin Calculus: Malliavin Derivative Definition

For a smooth functional  $F = f(B(h_1), \ldots, B(h_n))$ , with  $h_i \in H = L^2([0, \infty); \mathbb{R})$ :

$$D_t F = \sum_{i=1}^n \frac{\partial f}{\partial x_i} (B(h_1), \dots, B(h_n)) h_i(t)$$

- $DF: \Omega \to H$ , where  $H = L^2([0, \infty); \mathbb{R})$ , measures sensitivity to perturbations in  $B_t$ .
- Example: For  $F = B_T$ ,  $D_t F = 1_{[0,T]}(t)$ , which belongs to H.
- ▶ *D* is a Fréchet derivative in the directions of  $H_{CM}$ , well-defined if  $f \in C_b^1(\mathbb{R}^n)$ .

Malliavin Calculus: Skorokhod Integral

- Adjoint:  $\mathbb{E}[F\delta(u)] = \mathbb{E}[\langle DF, u \rangle_H], u \in \mathsf{Dom}(\delta).$
- For  $u_t = \sum F_j h_j(t)$ ,

$$\delta(u) = \sum F_j B(h_j) - \langle DF_j, h_j \rangle_H$$

•  $\delta$  extends the Itô integral to  $L^2(\Omega; H)$ , with  $Dom(\delta)$  dense in  $L^2(\Omega; H)$ .

#### Malliavin Calculus: Malliavin Matrix

• For 
$$F = (F^1, \ldots, F^m)$$
,

$$\gamma_F = (\langle DF^i, DF^j \rangle_H)_{i,j}$$

• Nondegeneracy:  $P(\det \gamma_F > 0) = 1$  implies F has a density in  $C^{\infty}(\mathbb{R}^m)$ .

• 1D: 
$$\gamma_F = \int_0^T (D_t F)^2 dt$$

#### Malliavin Calculus: Density Regularity

- Malliavin's criterion:  $F \in \mathbb{D}^{\infty}$ ,  $\mathbb{E}[|\det \gamma_F|^{-p}] < \infty$  for some p > 1.
- Implies  $p_F$  is smooth (Nualart, 2018).
- Key to score function derivation.

#### Bismut Formula: Historioal Development

- Jean-Michel Bismut (1980s):
  - Introduced the Bismut formula for the gradient of the heat semigroup on Riemannian manifolds, expressed via stochastic processes.
  - Linked stochastic analysis to differential geometry, aiding large deviation principles and index theorems.
- Elworthy-Li (1994):
  - Extended the formula to stochastic flows driven by stochastic differential equations (SDEs), using Malliavin calculus.
  - Applied it to derivatives of expectations for diverse diffusion processes and functionals.

#### Bismut-type" Formulae:

- Refers to extensions of Bismut's work, distinct from the original heat kernel context.
- ► Used in fields like financial sensitivity analysis (e.g., option pricing Greeks).
- Probabilistic Representation:
  - Computes the gradient of expectations, e.g., ∇E[φ(X<sub>t</sub>)], where X<sub>t</sub> is a diffusion process solving an SDE.
  - Bismut Formula (Simplified):

$$\nabla \mathbb{E}[\varphi(X_t)] = \mathbb{E}\left[\varphi(X_t) \cdot W_t\right]$$

where  $W_t$  is a stochastic weight derived from Malliavin calculus or the first variation process and  $\varphi$  is a functional.

 Key Idea: Expresses sensitivity to initial conditions probabilistically, avoiding explicit density calculations.

#### Bismut Formula: Covering Vector Fields

▶ **Definition**: For a random vector  $F = (F_1, ..., F_m)$ , covering vector fields  $u_k \in L^2(\Omega; H)$  (for k = 1, ..., m) satisfy:

 $\langle DF_i, u_k \rangle_H = \delta_{i,k}$  (1 if i = k, 0 otherwise)

where  $DF_i$  is the Malliavin derivative of  $F_i$ , and H is the Cameron-Martin space of perturbation directions.

- Intuition: Think of uk as "arrows" in the space of Brownian paths. Each uk perturbs the noise so that only the k-th component of F changes, "covering" all directions like a coordinate system. This lets us measure how F varies in each direction independently.
- **Purpose**: They enable the Bismut formula to compute gradients:

$$\partial_k \mathbb{E}[\varphi(F)] = \mathbb{E}[\varphi(F)\delta(u_k)]$$

linking deterministic derivatives to stochastic integrals.

- ► **Example**: For  $F = X_T$ , the solution to an SDE at time T,  $u_k = \sum_{j=1}^m (\gamma_{X_T}^{-1})_{k,j} DX_{T,j}$ , where  $\gamma_{X_T} = (\langle DX_{T,i}, DX_{T,j} \rangle_H)_{i,j}$  is the Malliavin covariance matrix.
- ▶ **Properties**: The  $u_k \in L^2(\Omega; H)$  ensure that the map  $DF : H \to \mathbb{R}^m$  is surjective, which holds when the Malliavin covariance matrix  $\gamma_F$  is invertible, allowing perturbations in all directions of *F*'s range.

#### Bismut-Type Formula

- Theorem:  $\partial_k \log p(y) = -\mathbb{E}[\delta(u_k)|F = y].$
- Probabilistic expression for score.
- How can we arrive at a computable formula for this expression?
  - Pick a suitable covering vector field  $u_k$ .
  - Reduce the Skorokhod integral  $\delta(u_k)$  to an Itô integral for computational tractability.
  - Rewrite Malliavin derivatives DF in terms of variation processes, derived from the SDE.

#### SDE and First Variation Process

Consider the linear SDE:

$$dX_t = b(t)X_t \, dt + \sigma(t) \, dB_t$$

where  $X_t \in \mathbb{R}^m$ ,  $B_t$  is a standard Brownian motion in  $\mathbb{R}^d$ ,  $\sigma(t) \in \mathbb{R}^{m \times d}$ ,  $b(t) \in \mathbb{R}^{m \times m}$ , and  $X_0 \sim p_{\text{data}}$ . The drift term  $b(t)X_t dt$  is linear in  $X_t$ .

• The first variation process  $Y_t = \frac{\partial X_t}{\partial x_0}$  satisfies:

$$dY_t = \partial_x [b(t)X_t] Y_t \, dt + \partial_x \sigma(t) Y_t \, dB_t$$

Since  $\sigma(t)$  is independent of  $X_t$ ,  $\partial_x \sigma(t) = 0$ , and  $\partial_x[b(t)X_t] = b(t)$ , reducing it to the ODE:

$$dY_t = b(t)Y_t \, dt, \quad Y_0 = I_m$$

This becomes:

$$\frac{dY_t}{dt} = b(t)Y_t$$

with solution:

$$Y_t = \exp\left(\int_0^t b(s) \, ds\right)$$

assuming b(t) commutes if matrix-valued.

• Example: If  $b(t) = -I_m$ , then:

$$Y_t = e^{-t}I_m$$

▶ Properties: *Y<sub>t</sub>* is continuous in *t*, invertible, and bounded in *L*<sup>∞</sup>([0, *T*]) if *b*(*t*) is integrable.

#### Malliavin-Bismut: Malliavin Matrix Derivation

The Malliavin matrix is defined as:

$$\gamma_{X_T} = \int_0^T D_r X_T (D_r X_T)^\top \, dr$$

where  $D_r X_T$  is the Malliavin derivative of  $X_T$ , showing its sensitivity to Brownian motion perturbations at time r.

• For a linear SDE  $dX_t = b(t)X_t dt + \sigma(t) dB_t$ :

$$D_r X_T = Y_T Y_r^{-1} \sigma(r)$$

with  $Y_t = \exp\left(\int_0^t b(s) \, ds\right)$ , the first variation process.

Substituting and simplifying:

$$\gamma_{X_T} = Y_T \left( \int_0^T Y_r^{-1} \sigma(r) \sigma(r)^\top (Y_r^{-1})^\top dr \right) Y_T^\top$$

resembling the covariance structure of  $X_T$ 's Malliavin derivatives.

#### Malliavin-Bismut: Covering Vector Field Construction

- $u_k(t) = \sum_{j=1}^m \gamma_{X_T}^{-1}(k,j) D_t X_T^j.$
- Verification:  $\langle DX_T^i, u_k \rangle_H = \delta_{i,k}$ .
- Ensures directional sensitivity.

#### Malliavin-Bismut: Skorokhod to Itô Reduction

• Since  $u_k(t)$  is adapted (due to deterministic coefficients),

$$\delta(u_k) = \int_0^T u_k(t) \, dB_t$$

• Simplify: 
$$\delta(u_k) = [\gamma_{X_T}^{-1}(X_T - Y_T X_0)]_k$$
.

The reduction holds in L<sup>2</sup>(Ω) as u<sub>k</sub> is F<sub>t</sub>-adapted, aligning with the Itô integral's definition.

#### Malliavin-Bismut: Score Function Formula

• Bismut formula:  $\partial_k \log p(y) = -\mathbb{E}[\delta(u_k)|X_T = y].$ 

► Final form:

$$\nabla_y \log p(y) = -\gamma_{X_T}^{-1} (y - Y_T \mathbb{E}[X_0 | X_T = y])$$

▶  $\nabla \log p \in L^2(\mathbb{R}^m)$  if p(y) is sufficiently smooth (e.g.,  $p \in H^1(\mathbb{R}^m)$ ) and  $\mathbb{E}[X_0|X_T = y]$  is well-defined..

#### Malliavin-Bismut: Regression Insight

- Score reduces to estimating  $\mathbb{E}[X_0|X_T = y]$ .
- ► Transforms score matching into regression problem.
- Simplifies computation via neural networks.
- The regression is well-posed in  $L^2(\Omega)$ , assuming  $X_0$  and  $X_T$  are jointly integrable.

#### Covariance in Malliavin and Fokker-Planck

- Linear SDE:  $dX_t = b(t)X_t dt + \sigma(t) dW_t$ , with initial condition  $X_0 = x_0$ .
- Fokker-Planck Approach:
  - Solves the PDE for the density  $p_t(x) = \mathcal{N}(\mu_t, \Sigma_t)$ , where:

$$\mu_t = Y_t x_0, \quad \Sigma_t = Y_t \left( \int_0^t Y_s^{-1} \sigma(s) \sigma(s)^\top (Y_s^{-1})^\top ds \right) Y_t^\top$$

• 
$$Y_t = \exp\left(\int_0^t b(s) \, ds\right)$$
 is the fundamental matrix.

- Malliavin Approach:
  - ► Malliavin matrix:  $\gamma_{X_T} = \int_0^T D_r X_T (D_r X_T)^\top dr$ , where  $D_r X_T = Y_T Y_r^{-1} \sigma(r)$  is the Malliavin derivative.
  - Compute:

$$\gamma_{X_T} = Y_T \left( \int_0^T Y_r^{-1} \sigma(r) \sigma(r)^\top (Y_r^{-1})^\top dr \right) Y_T^\top$$

• **Result**:  $\gamma_{X_T} = \Sigma_T$ , showing that the Malliavin matrix (stochastic sensitivity) equals the Fokker-Planck covariance (statistical variance).

#### Score Function in Malliavin and Fokker-Planck

**Fokker-Planck Score**: For  $p_t(x) = \mathcal{N}(Y_t x_0, \Sigma_t)$  with deterministic  $X_0 = x_0$ : ►

$$\nabla_x \log p_t(x) = -\Sigma_t^{-1}(x - Y_t x_0)$$

**Malliavin-Bismut Score**: General form for  $X_T$  at time T: ►

$$\nabla_y \log p(y) = -\gamma_{X_T}^{-1} (y - Y_T \mathbb{E}[X_0 | X_T = y])$$

- Equivalence (Deterministic  $X_0$ ):
  - ▶ If  $X_0 = x_0$  is fixed, then  $\mathbb{E}[X_0|X_T = y] = x_0$ . ▶ Thus:  $\nabla_y \log p(y) = -\gamma_{X_T}^{-1}(y Y_T x_0)$ .

  - Since  $\gamma_{X_T} = \Sigma_T$ , this equals  $-\Sigma_T^{-1}(y Y_T x_0)$ , matching the Fokker-Planck score.

#### Malliavin-Bismut: Algorithm Overview

- Algorithm: Malliavin Diffusion Framework.
- Steps:
  - 1. Simulate forward SDE:  $X_t$ .
  - 2. Compute  $\gamma_{X_t}^{-1}$  and  $Y_t$ .
  - 3. Train NN for  $\mathbb{E}[X_0|X_t, t]$ .
  - 4. Sample reverse SDE with score.

#### Malliavin-Bismut: Practical Considerations

- ▶ NN predicts  $\mathbb{E}[X_0|X_t, t]$  (e.g., U-Net).
- Cost: Matrix inversion of  $\gamma_{X_t}$  per time step.
- Scales with dimension m and time steps N.

- VP SDE:  $dX_t = -\frac{1}{2}\beta(t)X_t dt + \sqrt{\beta(t)} dB_t$ .
- ►  $\beta(t) = \beta_{\min} + (\beta_{\max} \beta_{\min}) \frac{t}{T}, \beta \in C([0,T]).$
- ► sub-VP SDE:  $dX_t = -\frac{1}{2}\beta(t)X_t dt + \sqrt{\beta(t)(1 e^{-2\int_0^t \beta(s) ds})} dB_t$ .
- Variance-preserving: Maintains signal variance.

#### Observation: Singularity in VP SDE

- Result:  $\gamma^{-1}(t) = O\left(\frac{1}{t}\right)$  as  $t \to 0$ .
- From:  $\gamma(t) \approx \beta_{\min} t I$ .
- Causes numerical issues in score near t = 0.
- $\gamma(t)$ 's eigenvalues scale as t, with  $\|\gamma^{-1}(t)\| \to \infty$  in  $L^{\infty}([0, \epsilon])$ , violating uniform ellipticity.

#### Observation: Singularity in Sub-VP SDE

• Result: 
$$\gamma^{-1}(t) = O\left(\frac{1}{t^2}\right)$$
 as  $t \to 0$ .

- $\blacktriangleright \quad \text{From: } \gamma(t) \approx \beta_{\min}^4 t^2 I.$
- Stronger singularity than VP.

## An Experiment: Checkerboard

#### Implications and Mitigations

- Implications: Instability near t = 0 affects sampling.
- Mitigations:
  - Regularise  $\sigma(t)$ : Linear growth near 0.
  - Adjust drift: Add damping term.
  - Tikhonov regularisation: Perturb  $\gamma(t)$ .
- Regularisation ensures  $\gamma(t)$  is invertible in  $L^2([0,T])$ , akin to Tikhonov's method for ill-posed operators.

#### Malliavin Score vs Analytical Score







#### Discussion: Summary of Contributions

- Developed Malliavin-Bismut framework for linear diffusion generative models.
- ► A promising framework for nonlinear diffusion generative models (next work)
- Reduced score matching to regression problem.
- Analysed singularities: VP O(1/t), Sub-VP  $O(1/t^2)$ .

#### Conclusions: Future Work

- Extend to nonlinear SDEs (Part II).
- Implement in generative tasks (e.g., image synthesis).
- Explore regularisation for stability.

#### Conclusions: Broader Impact

- Enhances robustness of diffusion models.
- Enables nonlinear modelling with stochastic tools.
- Encourages Malliavin calculus in ML research.

# Thank You