Predicting Alzheimer's disease progression: Results from the TADPOLE Challenge

Răzvan V. Marinescu^{1,2} Esther E. Bron³ Neil P. Oxtoby² Alexandra L. Young² Arthur W. Toga⁴ Michael W. Weiner⁵ Frederik Barkhof^{3,6} Nick C. Fox⁷ Polina Golland¹ Stefan Klein³ Daniel C. Alexander²

- 1. Computer Science and Artificial Intelligence Laboratory, MIT, USA
- 2. Centre for Medical Image Computing, University College London, UK
- 3. Biomedical Imaging Group Rotterdam, Erasmus MC, Netherlands
- 4. Laboratory of NeuroImaging, University of Southern California, USA
- 5. Center for Imaging of Neurodegenerative Diseases, UCSE, USA
- 6. Department of Radiology and Nuclear Medicine, VU Medical Centre, Netherlands
 - 7. Dementia Research Centre, UCL Institute of Neurology, UK

Slides available online at http://razvan.csail.mit.edu

• Which biomarkers can we predict, and which we cannot? (clinical diagnosis, MRI, cognitive tests)

- Which biomarkers can we predict, and which we cannot? (clinical diagnosis, MRI, cognitive tests)
- What is the state-of-the-art in Alzheimer's prediction models?

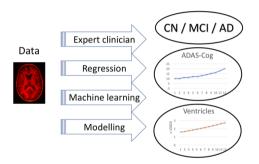
- Which biomarkers can we predict, and which we cannot? (clinical diagnosis, MRI, cognitive tests)
- What is the state-of-the-art in Alzheimer's prediction models?
- What are the winner algorithms? Should I use deep learning or not?

- Which biomarkers can we predict, and which we cannot? (clinical diagnosis, MRI, cognitive tests)
- What is the state-of-the-art in Alzheimer's prediction models?
- What are the winner algorithms? Should I use deep learning or not?
- Consensus (averaging over predictions of all teams): good or not?

- Which biomarkers can we predict, and which we cannot? (clinical diagnosis, MRI, cognitive tests)
- What is the state-of-the-art in Alzheimer's prediction models?
- What are the winner algorithms? Should I use deep learning or not?
- Consensus (averaging over predictions of all teams): good or not?
- Features: which ones are most informative? Do I need to pre-process those DTI scans, are MRIs not enough?

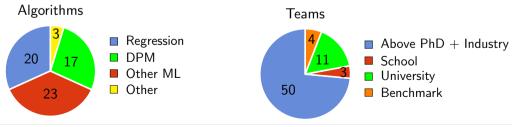
- Which biomarkers can we predict, and which we cannot? (clinical diagnosis, MRI, cognitive tests)
- What is the state-of-the-art in Alzheimer's prediction models?
- What are the winner algorithms? Should I use deep learning or not?
- Consensus (averaging over predictions of all teams): good or not?
- Features: which ones are most informative? Do I need to pre-process those DTI scans, are MRIs not enough?
- How well do algorithms work on "real data", i.e. clinical trials?

- Identify people that will develop Alzheimer's disease (AD) over the next 1-5 years.
 - Predict three target domains: clinical diagnosis, MRI (Ventricle Volume) and cognition (ADAS-Cog 13)
- Evaluation data on 219 subjects acquired by ADNI
- TADPOLE was entirely **prospective** evaluation data acquired after submission deadline: Nov 2017
- Why predict future evolution of AD?
 - No treatments for AD currently available
 - Select the right subjects for AD clinical trials



Submission statistics

33 teams from 12 countries



Razvan Marinescu

• 30,000 GBP prize fund offered by sponsors:

• Prizes were split according into six categories:

Prize amount	Outcome measure	Eligibility
£5,000	Diagnosis	all
£5,000	Cognition	all
£5,000	Ventricles	all
£5,000	Overall best	all
£5,000	Diagnosis	University teams
£5,000	Diagnosis	High-school teams

- Prediction results:
 - Clinical diagnosis
 - Ventricle volume
 - Cognition
- Overall winners & winning strategy
- Consensus methods
- Results on limited dataset mimicking clinical trial
- Most informative features

Clinical Diagnosis prediction: Winner algorithms achieve considerable gains over best benchmarks and state-of-the-art

- MAUC error reduced by 58% compared to the best benchmark
- Winner (Frog) used a method based on gradient boosting (xgboost)
- TADPOLE algorithms pushed ahead the state-of-the-art:
 - Best/29 algos in CADDementia challenge had a diagnosis MAUC of 0.78
 - Best/15 algos (Morandi, NeuroImage, 2015) obtained AUC of 0.902
- Full results on TADPOLE website: https://tadpole.grand-challenge.org/Results

Team Name	RANK MAUC	MAUC
Frog	1	0.931
Threedays	2	0.921
EMC-EB	3	0.907
GlassFrog-SM	4-6	0.902
GlassFrog-Average	4-6	0.902
GlassFrog-LCMEM-HDR	4-6	0.902
Apocalypse	7	0.902
EMC1-Std	8	0.898
CBIL	9	0.897
CN2L-RandomForest	10	0.896
BenchmarkSVM	30	0.836

• MAUC - multiclass area under the receiver-operator curve

Ventricle prediction: Winner algorithms achieve considerable gains over best benchmarks

- MAE reduced by 58% compared to best benchmark
- Winner (EMC1) used a method based on disease progression models
- No previous state-of-the-art due to lack of studies predicting ventricles

FileName	Rank	MAE	
FileName	Ventricles	Ventricles	
EMC1-Std	1-2	0.4116	
EMC1-Custom	1-2	0.4116	
ImaUCL-Covariates	3	0.4155	
ImaUCL-Std	4	0.4207	
BORREGOTECMTY	5	0.4299	
lmaUCL-halfD1	6	0.4402	
CN2L-NeuralNetwork	7	0.4409	
SBIA	8	0.4410	
EMC-EB	9	0.4466	
Frog	10	0.4469	
VikingAI-Logistic	11-12	0.4534	
VikingAI-Sigmoid	11-12	0.4534	
CBIL	13	0.4625	
${\sf BenchmarkMixedEffectsAPOE}$	23	0.5664	

• MAE - mean absolute error

Cognition prediction: TADPOLE algorithms **fail to predict** ADAS-Cog13 significantly better than random

- RandomisedBest best out of 100 random guesses
- Likely too much noise in cognitive test (ADAS-Cog 13)
- Methods might be better than random over longer time-windows (> 2 years)

FileName	RANK	MAE
FlieName	Cognition	Cognition
RandomisedBest	-	4.52
FortuneTellerFish-Control	1	4.70
${\sf BenchmarkMixedEffectsAPOE}$	2	4.75
FortuneTellerFish-SuStaIn	3	4.81
Frog	4	4.85
Mayo-BAI-ASU	5	4.98
CyberBrains	6	5.16
VikingAI-Sigmoid	7	5.20
GlassFrog-Average	8	5.26
CN2L-Average	9	5.31
CN2L-NeuralNetwork	10	5.36
DIKU-GeneralisedLog-Std	11-12	5.40
DIKU-GeneralisedLog-Custom	11-12	5.40

• MAE - mean absolute error

Deep Learning

Rank	Diagnosis
1	Gradient boosting
2	Random forest
3	SVM
4-6	Multi state model
4-6	Multi state model
4-6	Multi state model
7	SVM
8	DPM+SVM
9	LSTM
10	Random Forest
11	DPM+SVM
12	feed-forward NN
13-14	Bayesian classifier/LDA + DPM
13-14	Bayesian classifier/LDA + DPM
15	Aalen model
16	DPM + ordered logit model
17	Random forest

-	
Rank	Ventricles
1-2	DPM + spline regression
1-2	DPM + spline regression
3	Multi-task learning
4	Multi-task learning
5	Ensenble of regression $+$ hazard
6	Multi-task learning
7	RNN
8	Linear mixed effects
9	SVM regressor
10	Gradient boosting
11-12	DPM
11-12	DPM
13	LSTM
14	DPM
15	DPM
16	RNN+RF
17	RF

- Compared to the best TADPOLE submissions, consensus reduced the error by 11% for Cognition (ADAS) and 8% for Ventricles
- Most methods make systematic errors, either over- or under-estimating the future measurements

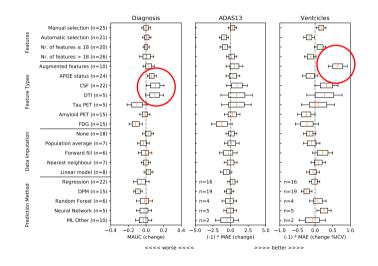
Submission	Overall	Dia	gnosis	Cogn	ition	Vent	ricles
	Rank	Rank	MAUC	Rank	MAE	Rank	MAE
ConsensusMedian	-	-	0.925	-	5.12	-	0.38
Frog	1	1	0.931	4	4.85	10	0.45
ConsensusMean	-	-	0.920	-	3.75	-	0.48
EMC1-Std	2	8	0.898	23-24	6.05	1-2	0.41
VikingAI-Sigmoid	3	16	0.875	7	5.20	11-12	0.45
EMC1-Custom	4	11	0.892	23-24	6.05	1-2	0.41
CBIL	5	9	0.897	15	5.66	13	0.46
Apocalypse	6	7	0.902	14	5.57	20	0.52

Prediction results on limited cross-sectional dataset mimicking a clinical trial are comparable to the full dataset

- Little loss of accuracy for the best methods
 - 0.48 vs 0.42 for ventricle MAE
 - 0.917 vs 0.931 for diagnosis MAUC
- Results suggest TADPOLE methods could be applied to clinical trial settings

	Overall	Dia	gnosis	Cogr	nition	Vent	ricles
Submission	Rank	Rank	MAUC	Rank	MAE	Rank	MAE
ConsensusMean	-	-	0.917	-	4.58	-	0.73
ConsensusMedian	-	-	0.905	-	5.44	-	0.71
GlassFrog-Average	1	2-4	0.897	5	5.86	3	0.68
GlassFrog-LCMEM-HDR	2	2-4	0.897	9	6.57	1	0.48
GlassFrog-SM	3	2-4	0.897	4	5.77	9	0.82
Tohka-Ciszek-RandomForestLin	4	11	0.865	2	4.92	10	0.83
RandomisedBest	-	-	0.811	-	4.54	-	0.92

- DTI and CSF features for clinical diagnosis prediction
- Augmented features for ventricle prediction
- However, further analysis needs to be done to make clear conclusions



- Which biomarkers can we predict, and which we cannot?
 - YES: diagnosis, ventricles
 - NO: cognition (ADAS-Cog 13)

• Which biomarkers can we predict, and which we cannot?

- YES: diagnosis, ventricles
- NO: cognition (ADAS-Cog 13)
- What is the state-of-the-art in Alzheimer's prediction
 Diagnosis MAUC Cognition MAE Ventricles MAE
 0.931 0.41

• Which biomarkers can we predict, and which we cannot?

- YES: diagnosis, ventricles
- NO: cognition (ADAS-Cog 13)
- What is the state-of-the-art in Alzheimer's prediction
 Diagnosis MAUC Cognition MAE Ventricles MAE
 0.931 0.41
- What are the winner algorithms? Should I use deep learning or not?
 - No clear winner
 - Clinical diagnosis: gradient boosting
 - Ventricle MAE: disease progression model
 - Best deep learning algo: 5th place

- Which biomarkers can we predict, and which we cannot?
 - YES: diagnosis, ventricles
 - NO: cognition (ADAS-Cog 13)
- What is the state-of-the-art in Alzheimer's prediction
 Diagnosis MAUC Cognition MAE Ventricles MAE
 0.931 0.41
- What are the winner algorithms? Should I use deep learning or not?
 - No clear winner
 - Clinical diagnosis: gradient boosting
 - Ventricle MAE: disease progression model
 - Best deep learning algo: 5th place

- Consensus (averaging over teams' predictions): good or not?
 - Consensus achieves top results
 - ADAS-Cog13: 11% better than TADPOLE best
 - Ventricles: 8% better than TADPOLE best

- Which biomarkers can we predict, and which we cannot?
 - YES: diagnosis, ventricles
 - NO: cognition (ADAS-Cog 13)
- What is the state-of-the-art in Alzheimer's prediction
 Diagnosis MAUC Cognition MAE Ventricles MAE
 0.931 0.41
- What are the winner algorithms? Should I use deep learning or not?
 - No clear winner
 - Clinical diagnosis: gradient boosting
 - Ventricle MAE: disease progression model
 - Best deep learning algo: 5th place

- Consensus (averaging over teams' predictions): good or not?
 - Consensus achieves top results
 - ADAS-Cog13: 11% better than TADPOLE best
 - Ventricles: 8% better than TADPOLE best
- Features: which ones are most informative? Do I need to pre-process those DTI scans, are MRIs not enough?
 - Diagnosis: CSF and DTI
 - Ventricles: Augmented features

- Which biomarkers can we predict, and which we cannot?
 - YES: diagnosis, ventricles
 - NO: cognition (ADAS-Cog 13)
- What is the state-of-the-art in Alzheimer's prediction
 Diagnosis MAUC Cognition MAE Ventricles MAE
 0.931 0.41
- What are the winner algorithms? Should I use deep learning or not?
 - No clear winner
 - Clinical diagnosis: gradient boosting
 - Ventricle MAE: disease progression model
 - Best deep learning algo: 5th place

- Consensus (averaging over teams' predictions): good or not?
 - Consensus achieves top results
 - ADAS-Cog13: 11% better than TADPOLE best
 - Ventricles: 8% better than TADPOLE best
- Features: which ones are most informative? Do I need to pre-process those DTI scans, are MRIs not enough?
 - Diagnosis: CSF and DTI
 - Ventricles: Augmented features
- How well do algorithms work on "real data"? i.e. clinical trials
 - minor loss in prediction performance
 - 0.917 vs 0.931 on diagnosis prediction

Next steps

• Manuscript under review (Nature Comm.)

- TADPOLE SHARE
 - share methods for validation and further development
 - 11 teams already sharing
 - Lead by Esther Bron: e.bron@erasmusmc.nl

• Follow-on evaluations as more ADNI data becomes available

netherlands

• Challenge still ongoing

- Challenge Participants
- Sponsors

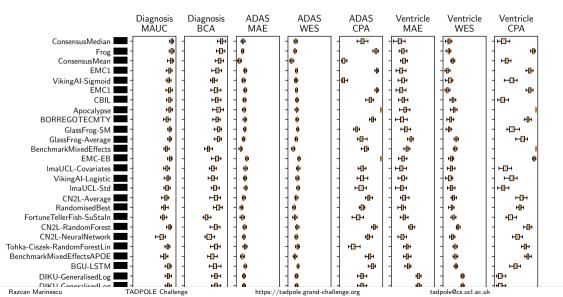
• Funders

Submissions

Submission	Extra Features	Nr. of features	Missing data imputation	Diagnosis prediction	ADAS/Vent. prediction
Submission	Feature selection	Number of features	Missing data imputation	Diagnosis prediction	ADAS/Vent. Prediction
AlgosForGood	Manual	16+5*	forward-filling	Aalen model	linear regression
Apocalypse	Manual	16	population average	SVM	linear regression
ARAMIS-Pascal	Manual	20	population average	Aalen model	-
ATRI-Biostat-JMM	automatic	15	random forest	random forest	linear mixed effects model
ATRI-Biostat-LTJMM	automatic	15	random forest	random forest	DPM
ATRI-Biostat-MA	automatic	15	random forest	random forest	DPM + linear mixed effects model
BGU-LSTM	automatic	67	none	feed-forward NN	LSTM
BGU-RF/ BGU-RFFIX	automatic	67+1340*	none	semi-temporal RF	semi-temporal RF
BIGS2	automatic	all	Iterative Soft-Thresholded SVD	RF	linear regression
Billabong (all)	Manual	15-16	linear regression	linear scale	non-parametric SM
BORREGOSTECMTY	automatic	100 + 400*	nearest-neighbour	regression ensemble	ensemble of regression +
					hazard models
BravoLab	automatic	25	hot deck	LSTM	LSTM
CBIL	Manual	21	linear interpolation	LSTM	LSTM
Chen-MCW	Manual	9	none	linear regression	DPM
CN2L-NeuralNetwork	automatic	all	forward-filling	RNN	RNN
CN2L-RandomForest	Manual	>200	forward-filling	RF	RF
CN2L-Average	automatic	all	forward-filling	RNN/RF	RNN/RF
CyberBrains	Manual	5	population average	linear regression	linear regression
DIKU (all)	semi-automatic	18	none	Bayesian classifier/LDA + DPM	DPM
DIVE	Manual	13	none	KDE+DPM	DPM
EMC1	automatic	250	nearest neighbour	DPM + 2D spline + SVM	DPM + 2D spline
EMC-EB	automatic	200-338	nearest-neighbour	SVM classifier	SVM regressor
FortuneTellerFish-Control	Manual	19	nearest neighbour	multiclass ECOC SVM	linear mixed effects model
FortuneTellerFish-SuStaln	Manual	19	nearest neighbour	multiclass ECOC SVM + DPM	linear mixed effects model + DPM
Frog	automatic	70+420*	none	gradient boosting	gradient boosting
GlassFrog-LCMEM-HDR	semi-automatic	all	forward-fill	multi-state model	DPM + regression
GlassFrog-SM	Manual	7	linear model	multi-state model	parametric SM
GlassFrog-Average	semi-automatic	all	forward-fill/linear	multi-state model	DPM + SM + regression
IBM-OZ-Res	Manual	Oct-15	filled with zero	stochastic gradient boosting	stochastic gradient boosting
ITESMCEM	Manual	48	mean of previous values	RF	LASSO + Bavesian ridge
TADP	OLE Challenge		https://tadpole.grand-ch	allenge.org	tadpole@cs.ucl.ac.u

Razvan Marinescu

Formula	Definitions
	n_i , n_j – number of points from class <i>i</i> and <i>j</i> . S_{ij} – the sum of
mAUC =	the ranks of the class i test points, after ranking all the class i
$rac{2}{L(L-1)}\sum_{i=2}^{L}\sum_{j=1}^{i}\hat{A}(c_{i},c_{j})$	and j data points in increasing likelihood of belonging to class
	i, L – number of data points
BCA =	TP_i , FP_i , TN_i , FN_i – the number of true positives, false
$\frac{1}{2L}\sum_{i=1}^{L}\left[\frac{TP}{TP+FN} + \frac{TN}{TN+FP}\right]$	positives, true negatives and false negatives for class $i L$ –
$\frac{1}{2L} \sum_{i=1}^{I} \left[TP + FN + TN + FP \right]$	number of data points
	M_i is the actual value in individual i in future data. $ ilde{M}_i$ is the
$\mathit{MAE} = rac{1}{N} \sum_{i=1}^{\mathit{N}} \left ilde{\mathcal{M}}_i - \mathcal{M}_i ight $	participant's best guess at M_i and N is the number of data
1 1	points
$WES = rac{\sum_{i=1}^{N} \tilde{C}_i ilde{M}_i - M_i }{\sum_{i=1}^{N} \tilde{C}_i}$	$M_i, \ ilde{M}_i$ and N defined as above. $ ilde{C}_i = (C_+ - C)^{-1}$, where
$VVES \equiv \frac{\sum_{i=1}^{N} \tilde{c}_i}{\sum_{i=1}^{N} \tilde{c}_i}$	$[C, C_+]$ is the 50% confidence interval
	actual coverage probability (ACP) - the proportion of
CPA = ACP - 0.5	measurements that fall within the 50% confidence interval.



19

Prize winners

Frog: overall TADPOLE champions & clinical status winners

Apocalypse: Uni. EMC1: ventricle Student winners volume winners

Chen: high school student winners

CyberBrains: high school student runners-up

GlassFrog: cross-sectional prediction winners

Category	Team	Members	Institution	Country	Prize
Overall best	Frog	Keli Liu, Paul Manser, Christina Rabe	Genentech	USA	£5000
Clinical	Frog	Keli Liu, Paul Manser, Christina Rabe	Genentech	USA	£5000
Diagnosis					
Ventricle	EMC1	Vikram Venkatraghavan, Esther Bron, Stefan Klein	Erasmus MC	Netherlands	£5000
volume					
Best university	Apocalypse	Manon Ansart	ICM, INRIA	France	£5000
team					
High-School	Chen-MCW	Gang Chen	Medical College	USA	£5000
(best)			Wisconsin		
High-School	CyberBrains	lonut Buciuman, Alex Kelner, Raluca Pop, Denisa	Vasile Lucaciu	Romania	£2500
(runner up)		Rimocea, Kruk Zsolt	College		
Overall best D3	GlassFrog	Steven Hill, Brian Tom, Anais Rouanst, Zhiyue	Cambridge	UK	£2500
prediction		Huang, James Howlett, Steven Kiddle, Simon R.	University		
		White, Sach Mukherjee, Bernd Taschler			

Razvan Marinescu TADPOLE Challenge	https://tadpole.grand-challenge.org	tadpole@cs.ucl.ac.uk
------------------------------------	-------------------------------------	----------------------