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What is Diffusion and Diffusion MRI?
Diffusion:
• Diffusion is the random motion of particles, for example the motion of 

water molecules in a medium (Brownian motion).
• Biological tissues also contain a substantial amount of water.
• Cell structure and tissue properties hinder this random motion of water.

Using Diffusion for Magnetic Resonance Imaging:
• Diffusion MRI (dMRI) is a magnetic resonance imaging technique that 

measures the diffusion of water molecules in biological tissues.
• This type of Magnetic Resonance Imaging is thus more sensitive to the 

moment of water molecules.

Diffusion Weighted Imaging (DWI):
• Generates an image contrast that depends on the random microscopic 

motion (diffusion) of water protons.
• The image gets substantially altered by different cell structures and 

pathological processes.
• The sensitivity the motion of water molecules can be controlled using 

diffusion weighting, commonly known as b-values (↑ more sensitive).

How can we simulate Diffusion MRI?
Particle based simulation or Monte-Carlo based simulations:
• Simulates and scans the motion (positions) of individual particles in a 

defined medium at fixed time steps.
• Track the total amount of phase change observed for each particle (phase 

accumulation) at each scan.
• Sum up the phase accumulation for all particles to obtain the signal (S).
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Pros:
• Fast and Intuitive signal generation.
• Can work for complex shapes.
Cons:
• Memory intensive (each particle’s trajectory is stored)
• Number of particles can be a limitation for simulation.
• Not differentiable (due to random sampling operations)

Simulation using Bloch-Torrey Equations:
• Bloch-Torrey PDEs combine Bloch equations for magnetization with 

diffusion terms to model spin behavior.
• These equations describe how magnetization evolves over time in the 

presence of magnetic fields and diffusion.
• Numerical methods solve these PDEs to simulate MRI signals in complex 

tissue geometries.
• Simulations can incorporate various tissue properties, gradient sequences, 

and diffusion characteristics for realistic modeling.

Pros:
• Can work for highly detailed and complex shapes.
• More reproducible.
• No limitation due to particles.
Cons:
• Slow for very complex shapes (CPU based) 
• Not Differentiable (due to included functions).

Making the Simulator Differentiable
Approach:
• We update and build from the Bloch-Torrey Equations approach.
• Each function of the Physics based simulator is written in Pytorch.
• Taking the advantage of Pytorch’s Automatic Differentiation feature and 

GPU based parallelization.
• Using the AutoDiff and the computational graph created by Pytorch 

allows us to perform Back-Propagation from any point in the Simulation 
process.
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Results:
• The differentiable simulator allows for updating of the input mesh directly 

over iterations reconstructing the desired mesh based on reference signal.
• Allows for visualizing the shape creating the dMRI signal for a given 

voxel.
• Can reconstruct arbitrary meshes only using signal generated by by that 

mesh.

Possible improvements and future scope:
• Ease the Ill-posed nature of the current reconstruction problem.
• Use additional networks to estimate substrate parameters instead of using 

fixed values.
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