## TADPOLE Competition: Prediction of Alzheimer's Evolution using Statistical Models and Machine Learning

Răzvan Valentin Marinescu Leon Aksman

Centre for Medical Image Computing, University College London, UK













Subtype and Stage Inference (Young et al., submitted, 2017)





▶ 46 million people affected worldwide



▶ 46 million people affected worldwide



- No treatments available that stop or slow down cognitive decline
- ▶ Q: Why did clinical trials fail? A: Treatments were not administered early enough

▶ 46 million people affected worldwide



- No treatments available that stop or slow down cognitive decline
- ▶ Q: Why did clinical trials fail? A: Treatments were not administered early enough
- ▶ Q: How can we then identify subjects early in order to administer treatments?
- ► A: Biomarkers ...

# Biomarker Evolution creates a Unique Disease Signature that can be used for Staging Individuals in Clinical Trials



- $\blacktriangleright$  Accurate disease staging  $\rightarrow$  better patient stratification
- ▶ Problem: This is a "hypothetical" (i.e. qualitative) disease progression model
- Why construct a quantitative model?



Basic biological insight



- Basic biological insight
- Staging can help stratification in clinical trials



- Basic biological insight
- Staging can help stratification in clinical trials
- Differential diagnosis and prognosis



- Basic biological insight
- Staging can help stratification in clinical trials
- Differential diagnosis and prognosis
- Predict future evolution of patients



- Basic biological insight
- Staging can help stratification in clinical trials
- Differential diagnosis and prognosis
- Predict future evolution of patients
- Early detection of disease in at-risk subjects



- Basic biological insight
- Staging can help stratification in clinical trials
- Differential diagnosis and prognosis
- Predict future evolution of patients
- Early detection of disease in at-risk subjects

#### Need to identify which models and features are best at above tasks ...

## TADPOLE Challenge aims to identify algorithms that best predict future evolution of subjects at-risk of AD



TADPOLE Challenge: Prediction of Longitudinal Evolution in Alzheimer's Disease Razvan V. Marinescu, Neil P. Oxtoby, Alexandra L. Young, Esther E. Bron, Arthur W. Toga, Michael W. Weiner, Frederik Barkhof, Nick C. Fox, Stefan Klein, Daniel C. Alexander, the EuroPOND Consortium, arXiv, 2018 Input: Large dataset from ADNI:

- $\blacktriangleright$  > 1,667 subjects with a total of 12,000 visits.
- > 2,000 biomarkers from imaging, demographic, cognitive and genetic data



**Task**: Estimate the pregression over the next 5 years of three key biomarkers:

| ► | Diagnosis        | RID | Forecast<br>Month | Forecast<br>Date | CN<br>relative<br>probability | MCI<br>relative<br>probability | AD<br>relative<br>probability | ADAS | ADAS<br>50% CI<br>lower | ADAS<br>50% CI<br>upper | Ventricles | Ventricles<br>50% CI<br>lower | Ventricles<br>50% CI<br>upper |
|---|------------------|-----|-------------------|------------------|-------------------------------|--------------------------------|-------------------------------|------|-------------------------|-------------------------|------------|-------------------------------|-------------------------------|
| ► | ADAS-COG13       | Α   | 1                 | 2018-01          | 0                             | 1                              | 0                             | 30   | 25                      | 35                      | 0.024      | 0.021                         | 0.029                         |
|   |                  | в   | 1                 | 2018-01          | 3                             | 2                              | 0                             | 25   | 21                      | 26                      | 0.023      | 0.021                         | 0.025                         |
| ► | Ventricle Volume | С   | 1                 | 2018-01          | 0.24                          | 0.38                           | 0.38                          | 40   | 25                      | 50                      | 0.025      | 0.023                         | 0.028                         |

### Evaluation

Overall winner: lowest sum of ranks in the three categories above

- Diagnosis MAUC
- ADAS-COG13 MAE
- Ventricle Volume MAE

#### We will offer prizes!

Live leaderboard will show progress of each team this week:

| RANK | TEAM NAME <sup>\$</sup> | MAUC<br>¢ | BCA<br>¢ | ADAS<br>MAE<br>¢ | VENTS<br>MAE<br>¢ | ADAS<br>WES<br>\$ | VENTS<br>WES<br>¢ | ADAS<br>CPA<br>\$ | VENTS<br>CPA<br>¢ | DATE ≎                      |
|------|-------------------------|-----------|----------|------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-----------------------------|
| 1    | TeamAlgosForG<br>ood1   | 0.809     | 0.856    | 4.087            | 4.52e-<br>03      | 4.087             | 3.81e-<br>03      | 0.091             | 0.006             | 2017-09-18<br>09:34 (UTC+0) |
| 2    | FPC1                    | 0.758     | 0.722    | 5.000            | 4.19e-<br>03      | 4.976             | 4.19e-<br>03      | 0.350             | 0.381             | 2017-09-18<br>09:34 (UTC+0) |
| 3    | FPC3                    | 0.706     | 0.721    | 6.369            | 2.56e-<br>03      | 6.736             | 2.56e-<br>03      | 0.250             | 0.267             | 2017-09-12<br>22:51 (UTC+0) |
| 4    | FPC2                    | 0.706     | 0.721    | 6.369            | 2.56e-<br>03      | 6.711             | 2.56e-<br>03      | 0.392             | 0.324             | 2017-09-18<br>09:34 (UTC+0) |

TADPOLE

- ► URL: https://tadpole.grand-challenge.org/
- ▶ Prize fund: £30,000

